Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
++++++++++++Семенов Ю.doc
Скачиваний:
4
Добавлен:
01.03.2025
Размер:
12.27 Mб
Скачать

2.6.4 Метод Шеннона-Фано Семенов ю.А. (гнц итэф)

Данный метод выделяется своей простотой. Берутся исходные сообщения m(i) и их вероятности появления P(m(i)). Сообщения упорядываются так, чтобы вероятность i-го сообщения была не больше (i+1)-го. Этот список делится на две группы с примерно равной интегральной вероятностью. Каждому сообщению из группы 1 присваивается 0 в качестве первой цифры кода. Сообщениям из второй группы ставятся в соответствие коды, начинающиеся с 1. Каждая из этих групп делится на две аналогичным образом и добавляется еще одна цифра кода. Процесс продолжается до тех пор, пока не будут получены группы, содержащие лишь одно сообщение. Каждому сообщению в результате будет присвоен код x c длиной –lg(P(x)). Это справедливо, если возможно деление на подгруппы с совершенно равной суммарной вероятностью. Если же это невозможно, некоторые коды будут иметь длину –lg(P(x))+1. Алгоритм Шеннона-Фано не гарантирует оптимального кодирования. Смотри http://www.ics.uci.edu/~dan/pubs/DC-Sec3.html.

2.6.5 Статический алгоритм Хафмана Семенов ю.А. (гнц итэф)

Статический алгоритм Хафмана можно считать классическим (см. также Р. Галлагер. Теория информации и надежная связь. “Советское радио”, Москва, 1974.) Определение статический в данном случае отностится к используемым словарям. Смотри также www.ics.ics.uci.edu/~dan/pubs/DataCompression.html (Debra A. Lelewer и Daniel S. Hirschberg).

Пусть сообщения m(1),…,m(n) имеют вероятности P(m(1)),… P(m(n)) и пусть для определенности они упорядочены так, что P(m(1)) P(m(2)) P(m(N)). Пусть x1,…, xn – совокупность двоичных кодов и пусть l1, l2,…, lN – длины этих кодов. Задачей алгоритма является установление соответствия между m(i) и xj. Можно показать, что для любого ансамбля сообщений с полным числом более 2 существует двоичный код, в котором два наименее вероятных кода xN и xN-1 имеют одну и ту же длину и отличаются лишь последним символом: xN имеет последний бит 1, а xN-10. Редуцированный ансамбль будет иметь свои два наименее вероятные сообщения сгруппированными вместе. После этого можно получить новый редуцированный ансамбль и так далее. Процедура может быть продолжена до тех пор, пока в очередном ансамбле не останется только два сообщения. Процедура реализации алгоритма сводится к следующему (см. рис. 2.6.5.1). Сначала группируются два наименее вероятные сообщения, предпоследнему сообщению ставится в соответствие код с младшим битом, равным нулю, а последнему – код с единичным младшим битом (на рисунке m(4) и m(5)). Вероятности этих двух сообщений складываются, после чего ищутся два наименее вероятные сообщения во вновь полученном ансамбле (m(3) и m`(4); p(m`(4)) = p(m(4)) + P(m(5))).

Рис. 2.6.5.1 Пример реализации алгоритма Хафмана

На следующем шаге наименее вероятными сообщениями окажутся m(1) и m(2). Кодовые слова на полученном дереве считываются справа налево. Алгоритм выдает оптимальный код (минимальная избыточность).

При использовании кодирования по схеме Хафмана надо вместе с закодированным текстом передать соответствующий алфавит. При передаче больших фрагментов избыточность, сопряженная с этим не может быть значительной.

Возможно применение стандартных алфавитов (кодовых таблиц) для пересылки английского, русского, французского и т.д. текстов, программных текстов на С++, Паскале и т.д. Кодирование при этом не будет оптимальным, но исключается статистическая обработка пересылаемых фрагментов и отпадает необходимость пересылки кодовых таблиц.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]