Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
++++++++++++Семенов Ю.doc
Скачиваний:
6
Добавлен:
01.03.2025
Размер:
12.27 Mб
Скачать

Семенов ю.А. (гнц итэф)

Fast Ethernet

Гигабитный Ethernet (GE)

10GE

10GE-FC

40GE

Data Center Fabric

100-мегагерцную сеть Ethernet дешевле создать на базе скрученных пар. Существует несколько версий 100-мегагерцного Ethernet (100base-T4, 100base-TX, 100base-FX, стандарт 100VG-anylan - IEEE 802.12). Формат кадра FE и GE предполагает обязательное использование ESD (EFD) - разграничителей конца кадра (потока). ESD (End Stream Delimeter) не увеличивает длины кадра, так как попадает в область IPG (96 бит-тактов, разделяющих кадры с длиной 1522 байта).

TX и RX передатчики и приемники входных/выходных оптоволоконных трансиверов, соответственно. FOMAU - (Fiber Optic Media Attachment Unit) оптоволоконный трансивер (см. рис. 4.1.1.1.9).

Сегменты T4 (100base-T4) используют четыре скрученные пары телефонного качества (экранированные и неэкранированные скрученные пары проводов категории 3, 4 или 5) длиной до 100м. Провода должны быть скручены по всей длине, скрутка может быть прервана не далее как в 12мм от разъема (это требование справедливо и для сегментов типа TX).

Сегменты TX (100base-TX, стандарт ANSI TP-PMD) состоят из двух скрученных пар проводов информационного качества (волновое сопротивление 100-150 Ом, экранированные и неэкранированные скрученные пары проводов категории 5, длина до 100м).

FX-сегменты (100base-FX) представляют собой оптоволоконные кабели, отвечающие требованиям стандарта ANSI. Мультимодовое волокно 62,5/125  (см. выше) работает в инфракрасном диапазоне 1350нм. Максимальная длина сегмента составляет 412 метров, ограничение определяется соображениями допустимых задержек. Предельное ослабление сигнала в волокне не должно превышать 11 дБ, стандартный кабель имеет 1-5 дБ/км. Оптические разъемы должны отвечать тем же требованиям, что и разъемы, используемые в FDDI-сетях (MIC- Media Interface Connector).

Для того чтобы выявить, к какой модификации относится тот или иной сегмент, разработан специальный протокол распознавания, позволяющий строить сети, которые содержат оборудование и кабельные сегменты, отвечающие разным требованиям.

Универсальная схема подключения ЭВМ или любого другого оборудования (например, сетевого принтера) к 100-мегагерцному Ethernet показана на рис. 4.1.1.2.1.

Физическая среда служит для передачи сигналов Ethernet от одной ЭВМ к другой. Выше были перечислены три вида физических сред, используемых 100-мегагерцным Ethernet (T4, TX и FX). Здесь используется 8-контактный разъем (RJ-45) для скрученных пар или специальный оптоволоконный соединитель. Блок PHY выполняет ту же функцию, что и трансивер в 10-мегагерцном Ethernet. Он может представлять собой набор интегральных схем в сетевом порту или иметь вид небольшой коробочки на MII-кабеле. Интерфейс MII является опционным, он может поддерживать работу с 10- и 100-мегагерцным ethernet. Задачей MII является преобразование сигналов, поступающих от PHY, в форму, приемлемую для стандартного набора ИС Ethernet. Соединительный кабель не должен быть длиннее 0,5м. PHY и MII могут быть объединены на одной интерфейсной плате, вставляемой в ЭВМ.

Рис. 4.1.1.2.1 Блок-схема подключения оборудования к 100-мегагерцному Ethernet

В сетях 100-мегагерцного Ethernet используются повторители двух классов (I и II). Задержки сигналов в повторителях класса I больше (~140нс), зато они преобразуют входные сигналы в соответствии с регламентациями применяемыми при работе с цифровыми кодами. Такие повторители могут соединять каналы, отвечающие разным требованиям, например, 100base-TX и 100base-T4 или 100base-FX. Преобразование сигнала может занимать время, соответствующее передаче нескольких бит, поэтому в пределах одного логического сегмента может быть применен только один повторитель класса I, если кабельные сегменты имеют предельную длину. Повторители часто имеют встроенные возможности управления с использованием протокола SNMP.

Повторители класса II имеют небольшие задержки (~90нс или даже меньше), но никакого преобразования сигналов здесь не производится, и по этой причине они могут объединять только однотипные сегменты. Логический сегмент может содержать не более двух повторителя класса II, если кабели имеют предельную длину. Повторители класса II не могут объединять сегменты разных типов, например, 100base-TX и 100base-T4. Согласно требованиям комитета IEEE время задержки сигнала jam в повторителе Fast Ethernet (TX и FX) не должно превышать 460 нсек, а для 100base-T4 - 670 нсек. Для повторителей класса I эта задержка не должна быть больше 1400 нсек. Значения предельных длин сегментов для различных конфигураций сети приведены в таблице 4.1.1.2.1.

Таблица 4.1.1.2.1. Максимальные размеры логического кабельного сегмента

Тип повторителя

Скрученные пары [м]

Оптическое волокно [м]

Один сегмент ЭВМ-ЭВМ

100

412

Один повторитель класса I

200

272

Один повторитель класса II

200

320

Два повторителя класса II

205

228

Типовые задержки для различных устройств Fast Ethernet представлены в табл. 4.1.1.2.2.

Таблица 4.1.1.2.2

Сетевое устройство

Задержка [нсек]

Повторитель класса I

700

Повторитель класса II (порты T4 и TX/FX)

460

Повторитель класса II (все порты T4)

340

Сетевая карта T4

345

Сетевая карта ТХ или FX

250

Вариант построения 100-мегагерцной сети ethernet показан на рис. 4.1.1.2.2.

Рис. 4.1.1.2.2. Возможная схема 100-мегагерцной сети Ethernet.

Из рисунка видно, что максимальная длина логического сегмента не может превышать А+Б+В = 205 метров (см. табл. 4.1.1.2.3.). Предельно допустимые длины кабелей А и В приведены в табл. 4.1.1.2.3.

Таблица 4.1.1.2.3. Максимально допустимые длины кабелей для сети, показанной на рис. 4.1.1.2.2 (Таблица взята из книги Лаема Куина и Ричарда Рассела Fast Ethernet, bhv, Киев, 1998.).

Тип кабеля А (категория)

Тип кабеля В (категория)

Класс повторителя

Макс. длина кабеля А [м]

Макс. длина кабеля В [м]

Макс. диаметр сети [м]

class=txt4>5,4,3 (TX, FX)

5,4,3 (TX, FX)

I или II

100

100

200

5 (TX)

Оптоволокно

I

100

160,8

260,8

3 или 4 (T4)

Оптоволокно

I

100

131

231

Оптоволокно

Оптоволокно

I

136

136

272

5 (TX)

Оптоволокно

II

100

208,8

308,8

3 или 4 (T4)

Оптоволокно

II

100

204

304

Оптоволокно

Оптоволокно

II

160

160

320

При работе со скрученными парами (стандарт TX) используется 8-контактный разъем RJ-45 со следующим назначением контактов:

Номер контакта

Назначение сигнала

Номер контакта

Назначение сигнала

1

Передача +

5

Не используется

2

Передача -

6

Прием -

3

Прием +

7

Не используется

4

Не используется

8

Не используется

Если используются экранированные пары и 9-контактный разъем “d”-типа, то назначение контактов следующее:

Контакт 1

Прием +

Контакт 5

Передача +

Контакт 6

Прием -

Контакт 9

Передача -

Для стандарта 100base-T4 назначение контактов приведено в таблице 4.1.1.2.4.

Таблица 4.1.1.2.4. Разъем MDI (media dependant interface) кабеля 100base-t4

Номер контакта

Назначение сигнала

Цвет провода

1

tx_d1 + (передача)

Белый/оранжевый

2

tx_d1 -

Оранжевый/белый

3

rx_d2 + (прием)

Белый/зеленый

4

bi_d3 + (двунаправленная)

Голубой/белый>

5

bi_d3 -

Белый/голубой

6

rx_d2 -

Зеленый/белый

7

bi_d4 +

Белый/коричневый>

8

bi_d4 -

Коричневый/белый

Как видно из таблицы, одна пара предназначена для передачи (TX), одна для приема (RX) и две для двунаправленной передачи (BI). Знак полярности сигналов обозначен соответственно + и -. Уровень логической единицы +3,5 В (CS1), нуля - 0 В (CS0), а -1 соответствует -3,5 В (CS-1). Стандарт 100base-T4 предполагает применение схемы кодирования 8B6T. Алгоритм 8B6T преобразует октет данных в 6-битовый тернарный символ, который называется кодовой группой 6Т. Эти кодовые группы передаются параллельно по трем скрученным парам сетевого кабеля, что позволяет осуществлять обмен лишь со скоростью 33,33Мбит/с. Скорость же передачи тернарных символов по каждой из пар проводов равна 6/8 от 33,33 Мбит/с, что эквивалентно 25 МГц. Шесть тернарных символов позволяют отобразить 36=729 различных кодов. Это позволяет отобрать для отображения 256 восьмибитовых кодов те тернарные символы, которые обеспечивают не менее 2 перепадов уровня сигнала. Схема подключения и передачи сигналов в сетях 100base-T4 показана на рис 4.1.1.2.3.

Пары 2 и 3 также как и в ТХ предназначены для приема и передачи данных. Пары 1 и 4 используются в двух направлениях, преобразуя канал между узлом и повторителем в полудуплексную. В процессе передачи узел использует пары 1, 2 и 4, а повторитель - пары 1, 3 и 4. Следует заметить, что схема Т4, в отличие от ТХ, может работать только в полудуплексном режиме.

Рис. 4.1.1.2.3. Схема подключения и передачи сигналов в сетях 100base-T4 (буквы К с цифрами обозначают номера контактов разъема)

В сетях Fast Ethernet максимальное значение окна коллизий равно 5,12 мксек и называется временем канала (slot time). Это время в точности соответствует минимальной длине пакета в 64 байта. Для более короткого пакета коллизия может быть не зафиксирована. Окно коллизий представляет собой время от начала передачи первого бита кадра до потери возможности регистрации коллизии с любым узлом сегмента, это время равно удвоенной задержке распространения сигнала между узлами (RTT). Конфигурация сети Fast Ethernet, для которой значение окна коллизий превышает время канала, не верна. Время канала задает величину минимального размера кадра и максимальный диаметр сети. Для пояснения этих взаимозависимостей рассмотрим сеть, показанную на рис. 4.1.1.2.4.

Рис. 4.1.1.2.4

Задержка повторителя складывается из задержек физического уровня обоих портов и собственно задержки повторителя. Задержка на физическом уровне сетевого интерфейса считается равной 250 нсек. Рассмотрим задержки сигнала для всех пар узлов (a, b и c) изображенной на рисунке сети:

a  b

250+110+700+11+250

= 1321 нсек

a  c

250+110+700+495+250

= 1805 нсек

b  c

250+11+700+495+250

= 1706 нсек

Когда А передает кадр, узлы В и С отслеживают наличие несущей. Это продолжается до тех пор, пока А не завершит эту процедуру. Как только узлы В и С фиксируют окончание передачи кадра узлом А, они запускают свои таймеры IPG. Запускает свой таймер ipg и узел А, причем его таймер стартует первым. На рис. 4.1.1.2.5 показана временная диаграмма развития событий в сетевом сегменте. Таймер В стартует следующим через 1321 нсек после А. Таймер узла С стартует спустя 1805 нсек после А.

Рис. 4.1.1.2.5 Временная диаграмма, поясняющая возникновение коллизий (все времена в наносекундах)

Узел В начинает передачу сразу после срабатывания его IPG-таймера, а через 484 наносекунды передачу начнет и узел С, так как канал с его точки зрения свободен. Но коллизии еще не происходит, так как их кадры еще не “столкнулись”. Для того чтобы первый бит от узла В достиг узла С, требуется 1706 наносекунд. Узел С зарегистрирует столкновение первым, это произойдет в момент 3987нсек. После этого С будет продолжать передачу еще в течение 320 нсек (сигнал jam). Сигнал jam гарантирует регистрацию коллизии повторителем. Только спустя 484 нсек коллизию обнаружит узел В, начнет передачу своего сигнала jam после чего прекратит передачу. При этом предполагается, что jam не является контрольной суммой передаваемого пакета.

Стандарт IEEE предусматривает возможность полнодуплексной связи при использовании скрученных пар или оптоволокна.

Реализуется это путем выделения для каждого из направлений передачи независимого канала. Такая схема осуществляет связь типа точка-точка и при определенных условиях позволяет удвоить пропускную способность сети. Здесь нет нужды в стандартном механизме доступа к сетевой среде, невозможны здесь и столкновения. Дуплексную схему могут поддерживать все три модификации 100-мегагерцного Ethernet (100base-TX, 100base-T4 и 100base-FX). Для оптоволоконной версии дуплексной связи предельная длина сегмента может достигать 2 км (для полудуплексного варианта предельная длина сегмента может достигать 412 м). Следует иметь в виду, что для локальных сетей целесообразнее применение мультимодового оптоволокна (дешевле и больше коэффициент захвата света, но больше удельное поглощение).