
- •Цель и задачи дисциплины, ее место в учебном процессе
- •Библиографический список
- •Современное развитие материаловедения как науки.
- •Лекция №1
- •Металлы и неметаллы. Особенности атомно-кристаллического строения
- •Дефекты кристаллического строения.
- •А.Макроскопический анализ.
- •Б.Микроскопический анализ.
- •В.Рентгеноструктурный анализ и рентгеновская дефектоскопия.
- •Лекция 2
- •Механизм и закономерности кристаллизации металлов.
- •Условия получения мелкозернистой структуры
- •Особенности строения металлического слитка
- •Структурные методы исследования.
- •Понятие о ликвации.
- •Аллотропические превращения железа при нагреве и охлаждении. Гистерезис.
- •Магнитные превращения
- •Получение монокристаллов.
- •Свойства аморфных металлов.
- •Лекция 3 Свойства материалов и методы их испытаний.
- •Механические свойства и способы определения их количественных характеристик: твердость, вязкость, усталостная прочность
- •Твердость по Бринеллю ( гост 9012)
- •Метод Роквелла гост 9013
- •Метод Виккерса
- •Метод царапания.
- •Динамический метод (по Шору)
- •Влияние температуры.
- •Способы оценки вязкости.
- •Основные характеристики:
- •3. Свариваемость.
- •4. Способность к обработке резанием.
- •Лекция 4 Основные равновесные диаграммы состояния двойных сплавов. Связь между составом, строением и свойствами сплавов.
- •Понятие о сплавах и методах их получения
- •Особенности строения, кристаллизации и свойств сплавов: механических смесей, твердых растворов, химических соединений
- •Классификация сплавов твердых растворов.
- •Кристаллизация сплавов.
- •Диаграмма состояния.
- •Диаграммы состояния двухкомпонентных сплавов. Диаграмма состояния сплавов с неограниченной растворимостью компонентов в твердом состоянии (сплавы твердые растворы с неограниченной растворимостью)
- •Диаграмма состояния сплавов с отсутствием растворимости компонентов в компонентов в твердом состоянии (механические смеси)
- •Диаграмма состояния сплавов с ограниченной растворимостью компонентов в твердом состоянии
- •Диаграмма состояния сплавов, компоненты которых образуют химические соединения.
- •Диаграмма состояния сплавов, испытывающих фазовые превращения в твердом состоянии (переменная растворимость)
- •Связь между свойствами сплавов и типом диаграммы состояния
- •Лекция 5 Железоуглеродистые сплавы. Диаграмма состояния железо – углерод.
- •Особенности диаграммы состояния железоуглеродистых сплавов.
- •Компоненты и фазы железоуглеродистых сплавов
- •Процессы при структурообразовании железоуглеродистых сплавов
- •Структуры железоуглеродистых сплавов
- •Лекция 6 Классификация и маркировка сталей и чугунов. Применение.
- •Классификация и маркировка сталей Классификация сталей
- •Маркировка сталей
- •Состав и сорта чугунов. Передельный чугун.
- •Литейный (серый) чугун.
- •Другие сорта чугуна.
- •Лекция 7 Классификация и маркировка легированных сталей. Применение. Влияние легирующих элементов на равновесную структуру сталей.
- •Принцип маркировки легированных сталей.
- •Легированные конструкционные стали
- •Легированные инструментальные стали
- •Влияние элементов на полиморфизм железа
- •Лекция 8.
- •1.Физическая природа деформации металлов.
- •2.Пластическое деформирование поли- и монокристаллов.
- •3.Механизм пластического деформирования.
- •Разрушение металлов.
- •Механические свойства и способы определения их количественных характеристик (повторение)
- •Особенности деформации поликристаллических тел.
- •Влияние пластической деформации на структуру и свойства металла: наклеп
- •Влияние нагрева на структуру и свойства деформированного металла: возврат и рекристаллизация
- •Лекция 9
- •Термическая обработка металлов и сплавов. Дефекты термической обработки и методы их предупреждения.
- •Виды термической обработки металлов.
- •Превращения, протекающие в структуре стали при нагреве и охлаждении
- •Механизм основных превращений
- •1) Превращение перлита в аустенит
- •2) Превращение аустенита в перлит при медленном охлаждении.
- •Закономерности превращения.
- •5. Технологические возможности и особенности отжига, нормализации, закалки и отпуска
- •Отжиг и нормализация. Назначение и режимы
- •1. Закалка в одном охладителе (v1).
- •2. Закалка в двух сферах или прерывистая (v2).
- •3. Ступенчатая закалка (v3).
- •4. Изотермическая закалка (v4).
- •5. Закалка с самоотпуском.
- •6. Основное оборудование для термической обработки.
- •Цвета побежалости и цвета каления и соответствующие им температуры.
- •Термическая обработка легированных сталей.
- •Лекция 10
- •Химико-термическая обработка стали: цементация, азотирование, нитроцементация и диффузионная металлизация.
- •1. Химико-термическая обработка стали
- •2. Назначение и технология видов химико-термической обработки: цементации, азотирования нитроцементации и диффузионной металлизации
- •Лекция 11
- •Методы повышения конструктивной прочности металла.
- •Термомеханическая обработка стали
- •Поверхностное упрочнение стальных деталей
- •Старение
- •Обработка стали холодом
- •Упрочнение методом пластической деформации
- •Лекция 13
- •Конструкционные стали. Классификафия конструкционных сталей.
- •Классификация конструкционных сталей
- •Улучшаемые легированные стали.
- •Материалы с особыми технологическими свойствами.
- •Технологические свойства металлов.
- •Лекция 19
- •Инструментальные стали
- •Лекция 20
- •Коррозионно-стойкие стали и сплавы. Жаростойкие стали и сплавы. Жаропрочные стали и сплавы
- •Лекция 21
- •Цветные металлы и сплавы на их основе. Титан и его сплавы. Алюминий и его сплавы. Магний и его сплавы. Медь и ее сплавы
- •Лекция 22
- •Композиционные материалы. Материалы порошковой металлургии: пористые, конструкционные, электротехнические
- •Материалы для производства металлов и сплавов
- •Производство чугуна.
- •Выплавка чугуна.
- •Продукты доменной плавки Основным продуктом доменной плавки является чугун.
- •Важнейшие технико-экономические показатели работы доменных печей
- •Лекция 2
- •Процессы прямого получения железа из руд. Производство стали. Процессы прямого получения железа из руд
- •Получение губчатого железа в шахтных печах.
- •Восстановление железа в кипящем слое.
- •Получение губчатого железа в капсулах-тиглях.
- •Производство стали Сущность процесса
- •Способы выплавки стали
- •Производство стали в кислородных конвертерах.
- •Дуговая плавильная печь.
- •Индукционные тигельные плавильные печи
- •Разливка стали
- •Способы повышения качества стали
- •Производство цветных металлов Производство меди
- •Производство магния
- •Общие принципы выбора заготовки
- •Основные факторы, влияющие на выбор способа получения заготовки.
- •Литейное производство Общие сведения о литейном производстве Современное состояние и роль литейного производства в машиностроении.
- •Классификация литых заготовок.
- •Литейные сплавы
- •Литейные свойства сплавов
- •Литейные сплавы
- •Способы изготовления отливок. Изготовление отливок в песчаных формах
- •Изготовление отливок в песчаных формах
- •Модельный комплект
- •Изготовление литейных форм
- •Формовка в кессонах.
- •Машинная формовка
- •Вакуумная формовка.
- •Изготовление стержней
- •Сборка и заливка литейной формы
- •Охлаждение, выбивка и очистка отливок
- •Специальные способы литья
- •Литье в оболочковые формы
- •Литье по выплавляемым моделям
- •Литье в металлические формы
- •Изготовление отливок центробежным литьем
- •Сборка и заливка литейной формы
- •Охлаждение, выбивка и очистка отливок
- •Специальные способы литья
- •Литье в оболочковые формы
- •Литье по выплавляемым моделям
- •Литье в металлические формы
- •Изготовление отливок центробежным литьем
- •Изготовление отливок электрошлаковым литьем
- •Изготовление отливок непрерывным литьем
- •Особенности изготовления отливок из различных сплавов
- •Стальные отливки
- •Алюминиевые сплавы
- •Медные сплавы
- •Титановые сплавы
- •Дефекты отливок и их исправление
- •Методы обнаружения дефектов
- •Методы исправления дефектов
- •Техника безопасности и охрана окружающей среды в литейном производстве
- •Прокат и его производство
- •Способы прокатки
- •Технологический процесс прокатки
- •Правка проката
- •Разрезка и заготовительная обработка проката
- •Продукция прокатного производства. Прессование. Волочение Продукция прокатного производства
- •Прессование
- •Волочение
- •Операции ковки
- •Предварительные операции
- •Основные операции
- •Оборудование для ковки
- •Конструирование кованых заготовок
- •Горячая объемная штамповка
- •Формообразование при горячей объемной штамповке
- •Чертеж поковки
- •Технологический процесс горячей объемной штамповки
- •Оборудование для горячей объемной штамповки
- •Горячая объемная штамповка на молотах
- •Геометрическая точность поковок, полученных на молотах
- •Горячая объемная штамповка на прессах
- •Штамповка на горизонтально-ковочных машинах
- •Ротационные способы изготовления поковок
- •Штамповка жидкого металла
- •Лекция Холодная штамповка
- •Объемная холодная штамповка
- •Листовая штамповка
- •Операции листовой штамповки
- •Высокоскоростные методы штамповки
- •Формообразование заготовок из порошковых материалов
- •Электрофизические и электрохимические методы обработки (эфэх) Характеристика электрофизических и электрохимических методов обработки
- •Электроэрозионные методы обработки
- •Электроискровая обработка
- •Электроимпульсная обработка
- •Электрохимическая обработка
- •Электрохимическая размерная обработка
- •Комбинированные методы обработки
- •Анодно-механическая обработка
- •Лучевые методы обработки
- •Плазменная обработка
- •Плазменное напыление.
Псковский индустриальный техникум
Кафедра технологии машиностроения
Электронный краткий конспект лекций
по теме:
«Материаловедение»
для специальности 120100 - "Технология машиностроения" (Объем лекций - 80 часа)
Автор: преподаватель спец. дисциплин
Затравкина Н.А.
Введение.
Материаловедение относится к числу основополагающих дисциплин для машиностроительных специальностей. Это связано с тем, что получение, разработка новых материалов, способы их обработки являются основой современного производства и во многом определяют уровнем своего развития научно-технический и экономический потенциал страны. Проектирование рациональных, конкурентоспособных изделий, организация их производства невозможны без достаточного уровня знаний в области материаловедения.
Материаловедение является основой для изучения многих специальных дисциплин.
Разнообразие свойств материалов является главным фактором, предопределяющим их широкое применение в технике. Материалы обладают отличающимися друг от друга свойствами, причем каждое зависит от особенностей внутреннего строения материала. В связи с этим материаловедение как наука занимается изучением строения материала в тесной связи с их свойствами. Основные свойства материалов можно подразделить на физические, механические, технологические и эксплуатационные.
От физических и механических свойств зависят технологические и эксплуатационные свойства материалов.
Среди механических свойств прочность занимает особое место, так как прежде всего от нее зависит неразрушаемость изделий под воздействием эксплуатационных нагрузок. Учение о прочности и разрушении является одной из важнейших составных частей материаловедения. Оно является теоретической основой для выбора подходящих конструкционных материалов для деталей различного целевого назначения и поиска рациональных способов формирования в них требуемых прочностных свойств для обеспечения надежности и долговечности изделий.
Основными материалами, используемыми в машиностроении, являются и еще долго будут оставаться металлы и их сплавы. Поэтому основной частью материаловедения является металловедение, в развитии которого, ведущую роль сыграли российские ученые: Аносов П.П., Чернов Д.К., Курнаков Н.С., Гуляев А.П. и другие.
В настоящих лекциях рассмотрены физические основы строения и свойств конструкционных материалов, приводятся широко используемые методы определения механических свойств материалов при различных видах нагружения, излагаются основы термической обработки и поверхностного упрочнения деталей, даются характеристики основных групп конструкционных материалов.
Цель и задачи дисциплины, ее место в учебном процессе
Целью преподавания дисциплины является научить инженеров применять основные методы управления конструкционной прочностью материалов и проводить обоснованный выбор материала для изделий с учетом условий их эксплуатации.
Для достижения поставленной цели при изучении дисциплины решаются следующие основные задачи:
приобретение знаний по оценке технических свойств материалов, исходя из условий эксплуатации и изготовления изделия;
формирование научно обоснованных представлений о возможностях рационального изменения технических свойств материала путем изменения его структуры;
ознакомление со способами упрочнения материалов, обеспечивающими надежность изделий и инструментов;
ознакомление с основными группами современных материалов, их свойствами и областью применения.
Преподавание дисциплины базируется на знаниях, полученных в курсе “Физика”:
На момент начала изучения дисциплины «Материаловедение» студентам необходимо знание следующих понятий: нагрузка, напряжение, деформация упругая и пластическая, работа, энергия, агрегатное состояние вещества, термодинамическая система, параметры термодинамической системы, внутренняя энергия, атомно-кристаллическое строение металлов, типы связей частиц в твердом теле, основные физические свойства металлов.
Материаловедение подготавливает студента к освоению специальных дисциплин изучающих основные производственные технологии и процессы.
Знание основ материаловедения необходимо технологу, инженеру, работающим в сфере эксплуатации современных машин и конструкций.
Библиографический список
Башнин Ю.А., Ушаков Б.К., Секей А.Г. Технология термической обработки. – М.: Металлургия, 1986.
Геллер Ю.А., Рахштадт А.Г. Материаловедение. – М.: Металлургия, 1989.
Гуляев А.П. Металловедение. – М.: Металлургия, 1986.
Дриц М.Е., Москалев М.А. Технология конструкционных материалов и материаловедение. – М.: Высш. шк., 1990.
Колачев Б.А., Ливанов В.А., Елагин А.И. Металловедение и термическая обработка цветных металлов и сплавов. –М.: Металлургия, 1981
Лахтин Ю.М. Основы материаловедения. – М.: Металлургия, 1988.
Лахтин Ю.М., Леонтьева В.П. Материаловедение. – М.: Машиностроение, 1990.
Материаловедение./ Б.Н. Арзамасов, И.И. Сидорин, Г.Ф. Косолапов и др. Под ред. Б.Н. Арзамасова. – М.: Машиностроение, 1986.
Материаловедение и конструкционные материаалы. \ Л.М. Пинчук и др. Минск: Высш. шк., 1989.
Материаловедение и технология металлов / Г.П. Фетисов, М.Г. Карпман, В.М. Матюнин и др. – М.:Высш.шк., 2002.
Металловедение / А.И. Самохоцкий, М.Н. Кунявский, Т.М. Кунявская и др. – М.: Металлургия, 1990.
Металловедение и термическая обработка стали. Справочник. Т.1, Т.2, Т.3 – М.: Металлургия, 1983.
Мозберг Р.К. Материаловедение. – М.: Высш. шк., 1991.
Новиков И.И. Теория термической обработки металлов. – М.: Металлургия, 1986.
Технология металлов и материаловедение /Б.В. Кнорозов, Л.Ф. Усова, А.В. Третьяков и др. – М.:Металлургия, 1987.
Технология металлов и конструкционные материалы, / Б.А. Кузьмин, Ю.Е. Абраменко, М.А. Кудрявцев и др. – М.: Машиностроение,1989.
Ю.П. Солнцев, Е. И. Пряхин «Материаловедение» – СПб.: Химиздат, 2007, 783с.
Материаловедение.
Краткие
исторические сведения о развитии
материаловедения.
Материаловедение - прикладная наука, изучающая взаимосвязи между составом, строением и свойствами металлов и сплавов в различных условиях. Изучение этой дисциплины позволяет осуществить рациональный выбор материалов для конкретного применения. Металловедение - постоянно развивающаяся наука, непрерывно обогащающаяся за счёт разработки новых сталей и сплавов, в свою очередь стимулирующих прогресс во всех областях науки и техники.
Как наука материаловедение насчитывает около 200 лет, несмотря на то, что человек начал использовать металлы и сплавы ещё за несколько тысячелетий до нашей эры. Только в 18 веке появились отдельные научные результаты, позволяющие говорить о начале осмысленного изучения всего того, что накопило человечество за всё время использования металлов.
Заметную роль в изучении природы металлов сыграли исследования французского учёного Реомюра (1683-1757). Ещё в 1722 году он провёл исследование строения зёрен в металлах. Англичанин Григнон ещё в 1775 году обратил внимание на то, что при затвердевании железа образуется столбчатая структура. Ему принадлежит известный рисунок дендрита, полученного при медленном затвердевании литого железа.
В России первым, кто начал научно осмысливать проблемы металлургии и литейного дела, был М.В. Ломоносов (1711-1765). Им написано учебное руководство «Первые основания металлургии рудных дел», в котором он, описывая металлургические процессы, постарался открыть их физико-химическую сущность.
Заметных успехов металловедение достигло лишь в 19 веке, что связано в первую очередь с использованием новых методов исследования структуры металла. В 1831 году П.П. Аносов (1799-1851) провёл исследование металла на полированных и протравленных шлифах, впервые применив микроскоп для исследования стали. Значительный вклад в развитие металловедения внесли работы русского учёного-металлурга П. П. Аносова (1799-1851), английских ученых Сорби и Роберта Аустена (1843-1902), немца А. Мартенса (1850-1914), Трооста и американца Э. Бейна (1891-1974), которые, каждый в своё время, рассматривая под микроскопом и фотографируя структуры, установили существование структурных превращений в сталях при их непрерывном охлаждении.
В 1873-1876 г.г Гиббс изложил основные законы фазового равновесия и, в частности, правило фаз, основываясь на законах термодинамики. Для решения практических задач знание фазового равновесия в той или иной системе необходимо, но не достаточно для определения состава и относительного количества фаз. Обязательно знать структуру сплавов, то есть атомное строение фаз, составляющих сплав, а также распределение, размер и форму кристаллов каждой фазы.
Создание научных основ металловедения по праву принадлежит Чернову Д.К. (1839 – 1903), который установил критические температуры фазовых превращений в сталях и их связь с количеством углерода в сталях. Этим были заложены основы для важнейшей в металловедении диаграммы состояния железоуглеродистых сплавов.
Открытием аллотропических превращений в стали, Чернов заложил фундамент термической обработки стали. Критические точки в стали, позволили рационально выбирать температуру ее закалки, отпуска и пластической деформации в производственных условиях.
В своих работах по кристаллизации стали, и строению слитка Чернов изложил основные положения теории литья, не утратившие своего научного и практического значения в настоящее время.
Разработка в 1902 году американскими учёными Ф. Тейлором и М. Уайтом быстрорежущей стали произвела переворот в машиностроении. Резко возросла производительность механической обработки, появились новые быстроходные станки и автоматы.
В 1906 году немецкий исследователь А. Вильм создал высокопрочный сплав алюминия с медью – дуралюмин, прочность которого в результате старения в несколько раз превышала прочность технического алюминия и других алюминиевых сплавов при сохранении достаточного запаса пластичности. Использование дуралюмина в самолётостроении на многие годы определило прогресс в этой области техники.
Немецким инженером заводов Круппа Мауэром и профессором Штраусом в 1912 году была получена хромоникелевая аустенитная нержавеющая сталь, а в 1912году Бренли – ферритная нержавеющая сталь.
20 век ознаменовался крупными достижениями в теории и практике материаловедения: были созданы высокопрочные материалы для деталей и инструментов, разработаны композиционные материалы, открыты сверхпроводники, применяющиеся в энергетике и других отраслях техники, открыты и использованы свойства полупроводников. Одновременно совершенствовались способы упрочнения деталей термической и химикотермической обработкой. Огромное значение для развития отечественного материаловедения в наше время имели работы А.А. Бочарова, Г.В. Курдюмова, В. Д. Садовского и В. А. Каргина.
Определение атомного строения фаз стало возможным после открытия Лауэ (1912 г), показавшего, что атомы в кристалле регулярно заполняют пространство, образуя пространственную дифракционную решетку, и что рентгеновские лучи имеют волновую природу. Дифракция рентгеновских лучей на такой решетке дает возможность исследовать строение кристаллов.
В последнее время для структурного анализа, кроме рентгеновских лучей, используют электроны и нейтроны. Соответствующие методы исследования называются электронографией и нейтронографией. Электронная оптика позволила усовершенствовать микроскопию. В настоящее время на электронных микроскопах полезное максимальное увеличение доведено до 100 000 раз.
В пятидесятых годах, когда началось исследование природы свойств металлических материалов, было показано, что большинство наиболее важных свойств, в том числе сопротивление пластической деформации и разрушению в различных условиях нагружения, зависит от особенностей тонкого кристаллического строения. Этот вывод способствовал привлечению физических теорий о строении реальных металлов для объяснения многих непонятных явлений и для конструирования сплавов с заданными механическими свойствами. Благодаря теории дислокаций, удалось получить достоверные сведения об изменениях в металлах при их пластической деформации.