Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Глава 2. Фотосинтез.doc
Скачиваний:
1
Добавлен:
01.03.2025
Размер:
14.13 Mб
Скачать

2.5. Роль пигментов в поглощении света

Пигменты зеленого листа поглощают свет. Известны следующие законы поглощения света:

1. Только свет, который поглощается, может производить химическое действие.

2. Каждый квант активирует только одну молекулу.

3. Вся энергия кванта поглощается одним электроном, который подымается на более высокий энергетический уровень.

Вероятность поглощения света зависит от длины волны и от относительной ориентации его электромагнитного поля по отношению к электронам в молекуле, которая поглощает этот свет.

На поглощение света влияет взаимное размещение электронов в атоме или молекуле; это связано с тем, что электроны обладают так называемым спином. Каждый электрон можно рассматривать как заряженную частицу, которая вращается (spining) вокруг своей оси (как Земля). С таким кручением связан момент количества движения, или спин. Величина спина всех электронов одинакова, но поскольку спин является векторной величиной, он может иметь разные направления в пространстве (в атоме имеется внутреннее магнитное поле). Поэтому возможны две ориентации, а именно, спин электрона может быть направлен параллельно или антипараллельно локальному магнитному полю. Спин – вектор магнитных моментов. Весь спин атома или молекулы является векторной суммой спинов всех электронов. Величина полного спина обозначается символом S. Количество возможных ориентаций электронного состояния в пространстве спина или молекулы – спиновая мультиплентность – выражается формулой 2S + 1, где S – величина полного спина целого атома или молекулы. Например, если S = 0, это значит, что проекция спинов всех электронов на направление магнитного поля взаимно уничтожается и величина 2S + 1 равна 1 и такое положение называется синглетным. С другой стороны, когда S = 1, то такое положение называется триплетным (2S + 1 = 3).

Синглеты и триплеты являются двумя наиболее важными спиновыми мультиплентностями, которые встречаются в биологических системах. Когда в молекуле все электроны попарно размещены на орбиталях, так что их спины направлены в противоположные стороны, полный спин молекулы будет 0 (S = 0) и молекула находится в синглетном состоянии. Основное, или невозбужденное состояние большинства молекул является синглетным, т. е. все электроны попарно размещены на орбиталях, владеющих минимальной энергией.

Когда электрон возбуждается и перемещается на другую незанятую орбиталь, возникают две возможности для спина. Спины двух электронов, размещенные на разных орбиталях, могут быть противоположно направленными – это все еще синглетное состояние. Но спины двух электронов могут быть направлены в одну сторону, и возникает триплетное состояние. Не вдаваясь в детали, отметим, что существует правило: уровень, обладающий более высокой спиновой мультиплентностью, имеет более низкую энергию. Таким образом, возбужденное триплетное состояние имеет более низкую энергию, чем соответствующее возбужденное синглетное состояние.

В основном состоянии молекула хлорофилла является синглетом, как практически, и все пигменты, имеющие значение для биологических систем.

Обычно электроны находятся на нижнем, основном, энергетическом уровне. Поглотив квант света, электрон переходит на более высокий энергетический уровень (π-орбиталь), а на основном остается электронная «дырка». Поглощенная энергия запасается в виде энергии электронного возбуждения. Это соответствует переходу молекулы в возбужденное состояние (рис. 2.7).

Поглощение молекулой хлорофилла а (Хл а) одного кванта красного света (содержание энергии 41 ккал/энштейн) приводит к переходу молекулы в первое синглетное возбужденное состояние, протяженность жизни которого составляет ~ 10–9 с.

Поглощение кванта синего света, который владеет большей энергией (65 ккал/энштейн) приводит к возникновению еще более короткоживущего (менее 10–12 с) другого возбужденного синглетного состояния. Первое возбужденное синглетное состояние может с поворотом спина и тратой тепла (10 ккал/моль) переходить в первое возбужденное триплетное состояние (протяженность жизни больше 10–4 с).

Рис. 2.7. Переходы между возбужденными состояниями хлорофилла

после поглощения кванта красного и синего света

Таким образом, для хлорофилла характерны два основных возбужденных синглетных состояний, которые значительно отличаются по энергии. Одно из этих состояний может быть возбуждено с помощью красного света, например с длиной волны 680 нм. Второе такое состояние обладает большей энергией и возбуждается синим светом (например, 430 нм).

Вероятность возбуждения синглетного основного состояния до уровня возбужденного триплетного состояния обычно составляет только около 10–5 вероятности перехода в возбужденное синглетное состояние. При переходе от основного синглетного состояния до триплетного должна значительно увеличиваться энергия электрона и одновременно измениться ориентация его спина. Так как совпадение этих двух явлений маловероятно, очень малое количество молекул хлорофилла в результате поглощения света непосредственно возбуждаются с основного состояния до триплетного.

Время нахождения электрона на верхнем уровне, в возбужденном состоянии очень мало. При возвращении из возбужденного в основное состояние энергия может выделяться в виде тепла, в виде света (флуоресценция, фосфоресценция), затрачиваться на фотохимическую работу или передаваться другим молекулам, которые перейдут, в свою очередь, в возбужденное состояние.

Флуоресценция – явление, при котором вещество поглощает некоторые из падающих на него лучей и превращает их в лучи с более длинными волнами. Если источник света убрать, флуоресценция прекратиться.

Часть поглощаемой энергии может высвечиваться, например хлорофилл высвечивает в виде красного света, хлорофилл флуоресцирует вишневым цветом. Это доказывает, что часть поглощенной пигментом энергии не используется на фотосинтез, а выделяется снова с изменением длины волны. Флюоресценция тем сильнее, чем меньше поглощенной энергии света используется на фотосинтез.

Фосфоресценция в отличие от флюоресценции представляет собой выделение света с большим периодом времени затухания, что объясняется необходимостью поворота спина и вследствии этого большей протяженностью самого возбужденного состояния.

Поглотив квант синего света, электрон выделяет часть энергии в виде тепла, и переходит со второго в первое возбужденное синглетное состояние. Поэтому поглощение света в синей и красной областях спектра дает одинаковый спектр выделения флуоресценции (раствор флуоресцирует вишневым цветом независимо от того, какие кванты – синие или красные – поглотили пигменты) и выполняется одинаковое количество фотохимической работы.

Раствор пигментов флуоресцирует в 10 раз сильнее, чем живой лист, потому что в листе энергия растрачивается на фотохимическую работу, а в растворе нет.

Фотохимическая работа представляет собой перенос электронов против градиента потенциала, от вещества с большим положительным потенциалом до вещества с более отрицательным потенциалом. Более подробно о фотохимической работе мы поговорим позднее.

Итак, поглотив квант света, молекула пигмента переходит в короткоживущее возбужденное состояние, быстро выделяет эту энергию перечисленными выше путями (см. рис. 2.7) и переходит в основное состояние. Таким образом, первичные процессы дальнейших фотохимических реакций заключается в акте поглощения света с последующей потерей (дезактивацией) возбужденного состояния.

Поглощение света является очень быстрым актом (10–15 с – синий свет).

Время, необходимое для реакции дезактивации возбужденного состояния, обычно выражают через время жизни. Время жизни – это время, которое необходимо чтобы количество молекул в данном состоянии (в данном случае в возбужденном) уменьшалась на 63 %; для оценки времени жизни используется также период полуразрушения (когда количество уменьшается на 50 %).

Дезактивация возбужденного состояния, как нами отмечалось, происходит за счет таких процессов, как фотохимическая работа, флуоресценция, фосфоресценция и безизлучательные переходы (в виде тепла). Последние переходы очень быстрые (10–12 с), поэтому при переходе из одного возбужденного синглетного состояния к другому нет никакого шанса на выделение флуоресценции. Безизлучательные переходы характерны и для других состояний. Время жизни при флуоресценции для большинства органических молекул – ~ 10–9 – 10–8 с, для фосфоресценции – 10–3 – 10–2 с.

Д ля описания процессов снятия возбуждения, подобно тем, какие происходят на первом этапе фотосинтеза, часто используется понятие квантового выхода (Ф).

Рассмотрим квантовый выход флюоресценции хлорофилла. Время жизни при флуоресценции самого низкого возбужденного синглетного хлорофилла в эфире τi = 1,5 · 10–8, тогда как наблюдаемое время жизни τ для процесса дезактивации этого возбужденного состояния в подобных условиях (эфире) составляет 0,5 · 10–8 с, следовательно:

что совпадает с наблюдаемым в опыте.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]