
- •1.Формула простых процентов. Понятие временной базы. Точные и обыкновенные проценты с точным и приближенным числом дней ссуды.
- •2. Период окупаемости инвестиций. Сравнение вариантов долгосрочных инвестиций по совокупности показателей.
- •II. Дисконтный метод оценки проектов.
- •1.Понятие финансовой ренты. Виды финансовой ренты. Коэффициенты наращения и приведения ренты.
- •Годовая рента
- •Рента пренумерандо
- •1.Понятие финансовой ренты. Виды финансовой ренты. Коэффициенты наращения и приведения ренты.
- •Годовая рента
- •Рента пренумерандо
- •1.Понятие финансовой ренты. Виды финансовой ренты. Определение параметров финансовых рент.
- •Годовая рента
- •Рента пренумерандо
- •2.Сущность процентных денег. Формула простых процентов. Точные и обыкновенные проценты с точным и приближенным числом дней ссуды. Определение срока операции и ставки процентов.
- •1.Английская практика-точные % с точным числом дней
- •2.Французская-обыкновенные % с точным числом дней
- •3.Германская практика-обыкновенные % с приближенным числом дней
- •2. Сущность дисконтирования. Формулы дисконтирования. Определение срока платежа и учетной ставки.
- •1.Погашение долга единовременным платежом.
- •1.Финансово-экономические расчеты при проведении валютных операций
- •2. Точные и обыкновенные проценты с точным и приближенным числом дней ссуды. Определение срока платежа и ставки процентов. Порядок начисления процентов в кредитных организациях России.
- •1.Английская практика-точные % с точным числом дней
- •2.Французская-обыкновенные % с точным числом дней
- •3.Германская практика-обыкновенные % с приближенным числом дней
- •1.Доходность финансово-кредитных операций.
- •2.Формула простых процентов. Понятие временной базы. Точные и обыкновенные проценты с точным и приближенным числом дней.
- •1.Английская практика-точные % с точным числом дней
- •2.Французская-обыкновенные % с точным числом дней
- •3.Германская практика-обыкновенные % с приближенным числом дней
- •1.Анализ инвестиций в облигации.
- •2. Сущность процентных денег (процентов). Процентные ставки, периоды начисления и наращенные суммы. Формула простых процентов. Понятие временной базы.
- •Точные и обыкновенные проценты с точным и приближенным числом дней ссуды. Определение срока платежа и ставки процентов. Порядок начисления процентов в кредитных организациях России.
- •1.Английская практика-точные % с точным числом дней
- •2.Французская-обыкновенные % с точным числом дней
- •3.Германская практика-обыкновенные % с приближенным числом дней
- •2. Средний срок и средняя продолжительность платежей. Оценка облигаций, премия и дисконт. Анализ портфеля облигаций.
- •Сущность начисления сложных процентов. Формула сложных процентов. Множитель наращения и способы его определения.
- •2. Составление плана погашения долга. Погашение долга при потребительском кредите. Погашение ипотечного кредита. Баланс кредитной операции.
- •1.Понятие временной базы. Методики начисления процентов
- •1.Английская практика-точные % с точным числом дней
- •2.Французская-обыкновенные % с точным числом дней
- •3.Германская практика-обыкновенные % с приближенным числом дней
- •2.Облигации и их параметры. Виды облигаций: без выплаты процентов, с выплатой процентов в конце срока, с периодической выплатой процентов.
- •Годовая рента
- •Рента пренумерандо
- •2.Французская-обыкновенные % с точным числом дней
- •3.Германская практика-обыкновенные % с приближенным числом дней
- •1. Определение срока платежа и ставки процентов. Порядок начисления процентов в кредитных организациях Российской Федерации.
- •1.Английская практика-точные % с точным числом дней
- •2.Французская-обыкновенные % с точным числом дней
- •3.Германская практика-обыкновенные % с приближенным числом дней
- •2.Методики погашения долга. Составление плана погашения долга. Погашение долга равными долями (равными суммами основного долга).
- •2.Методики погашения долга. Погашение долга при потребительском кредите. Составление плана погашения долга.
- •1.Сущность дисконтирования. Формулы дисконтирования. Определение срока платежа и учетной ставки.
- •1.6 Дисконтирование по учетной ставке.
- •2.Принцип финансовой эквивалентности обязательств. Уравнение эквивалентности.
- •1.Сущность процентных денег. Формула простых процентов. Точные и обыкновенные проценты с точным и приближенным числом дней ссуды. Определение срока операции и ставки процентов.
- •2.Французская-обыкновенные % с точным числом дней
- •3.Германская практика-обыкновенные % с приближенным числом дней
- •2. Понятие эквивалентности процентных ставок. Средняя процентная ставка.
- •1 Сущность начисления сложных процентов. Формула сложных процентов. Множитель наращения и способы его определения.
- •2.Понятие эквивалентности процентных ставок. Вывод формул эквивалентное!и ставок на основе равенства множителей наращения.
- •1.Сущность начисления сложных процентов. Формула сложных процентов. Сравнение роста по сложным и простым процентам(лекция 3.4.).
- •I.Бухгалтерский метод
- •2. Сущность инфляции. Брутто-ставка процентов. Формула Фишера
- •Сущность начисления сложных процентов. Формула сложных процентов. Дисконтирование по формуле сложных процентов.
- •1. Сущность начисления сложных процентов. Формула сложных процентов. Определение срока платежа и ставки процентов.
- •1.Сравнение интенсивности процессов наращения но различным видам процентных ставок.
- •2. Сущность инфляции. Брутто-ставка процентов. Формула Фишера
- •1.Сравнение интенсивности процессов дисконтирования по различным видам процентных ставок.
- •2.Сущность инфляции. Индекс цен и индекс инфляции. Темп инфляции. Индексация ставки процентов.
- •1.Понятие эквивалентности процентных ставок. Вывод формул эквивалентности ставок на основе равенства множителей наращения.
- •2. Сущность начисления сложных процентов. Формула сложных процентов. Дисконтирование по формуле сложных процентов.
- •1.Понятие эквивалентности процентных ставок. Средняя процентная ставка.
- •2. Сущность начисления сложных процентов. Начисление процентов несколько раз в году. Номинальная ставки процентов..
- •1.Принцип финансовой эквивалентности обязательств. Уравнение эквивалентности.
- •2 Сущность начисления сложных процентов. Формула сложных процентов. Сравнение роста по сложным и простым процентам..(лекция 3.4.)
- •1.Изменение условий контрактов на основе уравнения эквивалентности. Объединение (консолидация) платежей. Формула для расчета суммы консолидированного платежа.
- •2. Сущность начисления сложных процентов. Формула сложных процентов. Множитель наращения и способы его определения.
- •1.Формула для расчета суммы последнего платежа при нескольких сроках платежа!!!
- •2.Сущность процентных денег. Формула простых процентов. Точные и обыкновенные проценты с точным и приближенным числом дней ссуды. Определение срока операции и ставки процентов.
- •2.Французская-обыкновенные % с точным числом дней
- •3.Германская практика-обыкновенные % с приближенным числом дней
- •1.Изменение условий контрактов на основе уравнения эквивалентности. Формула для расчета суммы последнего платежа при нескольких сроках платежей.
- •2.Сущность дисконтирования. Формулы дисконтирования. Определение срока платежа и учетной ставки.
- •1.Сущность инфляции. Индекс цен и индекс инфляции. Темп инфляции. Индексация ставки процентов.
- •1.Сущность инфляции. Брутто-ставка процентов. Формула Фишера.
- •2. Точные и обыкновенные проценты с точным и приближенным числом дней ссуды. Определение срока платежа и ставки процентов. Порядок начисления процентов в кредитных организациях России.
- •1.Английская практика-точные % с точным числом дней
- •2.Французская-обыкновенные % с точным числом дней
- •3.Германская практика-обыкновенные % с приближенным числом дней
- •1.Сущность инфляции. Индексация первоначальной суммы долгового обязательства.
- •5.5. Международное уравнение Фишера для расчета брутто ставки.
- •2. Формула простых процентов. Понятие временной базы. Точные и обыкновенные проценты с точным и приближенным числом дней ссуды.
- •1.Английская практика-точные % с точным числом дней
- •2.Французская-обыкновенные % с точным числом дней
- •3.Германская практика-обыкновенные % с приближенным числом дней
1.Сущность инфляции. Индекс цен и индекс инфляции. Темп инфляции. Индексация ставки процентов.
Сущность инфляция и ее параметры.
Инфляция – это снижение покупательной способности денег (т.е. рост цен).
Параметры инфляции:
уровень инфляции – показывает на сколько процентов выросли цены, задается за период времени (месяц, квартал, полугодие, год);
индекс (темп) инфляции – показывает во сколько раз выросли цены, находится за любой срок по формуле:
, где - индекс инфляции за срок,
- уровень инфляции за период,
N - количество периодов за срок.
Индекс инфляции используется для:
1) индексации денежной суммы, когда исходную сумму умножают на индекс инфляции:
, где исходная сумма,
сумма с учетом инфляции;
2) определения реальной покупательной способности денежной суммы, когда исходную сумму делят на индекс инфляции:
, где реальная покупательная способность денежной суммы.
Учет инфляции при начислении процентов
В банках при начислении процентов инфляцию учитывают двумя способами:
1) индексация первоначальной суммы, когда первоначальная сумма долга периодически индексируется согласно заранее оговоренному индексу:
2) индексация процентной ставки, когда наращение осуществляется, по так называемой брутто-ставке, которая учитывает реальную доходность операции и инфляционную премию:
, где
- наращенная сумма с учетом инфляции,
Р - первоначальная сумма долга,
n - срок долга,
- индекс инфляции за срок долга,
i - нетто-ставка, т.е. реальная доходность операции,
- брутто-ставка.
Значение брутто-ставки определяют из уравнения эквивалентности Фишера, в котором приравнивают результаты учета инфляции:
а) брутто-ставка простых процентов: б) брутто-ставка сложных процентов:
2. Сущность дисконтирования. Понятие дисконта. Учет векселей и формирование цены дисконтных ценных бумаг. Дисконтирование по простой ставке процентов и учетной ставке (банковский учет). Формулы дисконтирования.
Дисконтирование по простой ставке процентов.
Дисконтирование- это определение денежной суммы на данный момент времени, если известно значение этой суммы в будущем.
При начислении простых процентов с помощью дисконтирования определяют первоначальную сумму долга, если известна его наращенная сумма, т.е. решается задача, обратная наращению.
Формула дисконтирования по простой ставке: P = ,
где - дисконтный множитель по простой ставке процентов, показывает во сколько раз первоначальная сумма долга P меньше наращенной суммы S.
Дисконтирование по простой ставке процентов называют - математическим дисконтированием.
Дисконтирование по учетной ставке.
Учетные ставки используются при учете векселей.
Учет векселя - это покупка банком векселя до срока погашения по цене ниже наминала векселя, т.е. со скидкой.
Учет векселя - это взаимовыгодная операция, т.к. клиент получает возможность обналичить вексель до его погашения, а банк, при наступлении срока погашения, получает номинал векселя и, таким образом реализует доход, равный сделанной скидке.
Доход банка при учете векселей называют дисконтом.
Сумма дисконта зависит от:
- номинала векселя;
- срока до погашения;
- учетной ставки.
Рассчитывается сумма дисконта аналогично сумме простых процентов (I=P i n)
Формула дисконта : D=S d n , где D - сумма дисконта,
S - номинал векселя,
d - учетная ставка,
n- срок до погашения.
Зная сумму дисконта, банк определяет цену векселя, путем вычисления дисконта (скидки) из номинала векселя:
P = S – D = D = S d n = S (1-d n)
Цена векселя P определяется, исходя из номинала S, который будет погашен в будущем, т.е. путем дисконтирования.
Формула дисконтирования по учетной ставке: P = S (1 - d n) ,
где P - цена векселя при учете,
(1 - d n) - дисконтный множитель по учетной ставке, который показывает во сколько раз цена векселя P меньше номинала S.
Из формулы дисконтирования выводят формулы для учетной ставке и срока:
P = S (1 - d n)
P = S - S d n
S d n = S – P
1) размер учетной ставки: d = ,
2) срок до погашения: n =
3.При открытии сберегательного счета по ставке 10,7% годовых 21 мая на счет была положена сумма 3750 руб., а 18 ноября счет был закрыт. Определить сумму начисленных процентов и сумму, полученную вкладчиком при закрытии счета (по английской и германской практиках).
Билет 33.