
- •Глава 1. Дискретная случайная величина
- •§1.Понятия случайной величины. Закон распределения дискретной случайной величины.
- •§2. Функция распределения
- •Свойства функции распределения:
- •§3. Числовые характеристики дискретной случайной величины.
- •Свойства математического ожидания:
- •Свойства дисперсии:
- •§4. Биномиальный закон распределения дискретной случайной величины, закон Пуассона.
- •Задачи для самостоятельной работы.
- •Ответы:
- •Глава 2. Непрерывная случайная величина
- •Свойства функции распределения:
- •Свойства плотности распределения вероятностей:
- •Числовые характеристики
- •Задачи для самостоятельного решения.
- •Глава 3. Некоторые законы распределения непрерывной случайных величин.
- •§1. Равномерный закон распределения
- •§2. Показательный (экспоненциальный) закон распределения
- •§3.Нормальный закон распределения
- •«Правило трех сигм»
- •Задачи для самостоятельной работы
Глава 3. Некоторые законы распределения непрерывной случайных величин.
§1. Равномерный закон распределения
Определение: Непрерывная случайная величина Х имеет равномерный закон распределения на некотором интервале (а;b), которому принадлежат все возможные значения Х, если плотность распределения вероятностей f(x) постоянная на этом интервале и равна 0 вне его, т.е.
0 при х≤а,
f(х)=
при a<х<b,
0 при х≥b .
График функции f(x) изображен на рис. 1
(рис. 1)
(рис.2)
Функция распределения случайной величины Х, распределенной по равномерному закону, задается формулой:
0 при х≤а,
F(х)=
при a<х≤b,
0 при х>b.
Ее график изображен на рис. 2.
Числовые характеристики случайной величины равномерно распределенной на интервале (a;b), вычисляются по формулам:
M(Х)=
,
D(X)=
,
σ(Х)=
.
Задача№1. Случайная величина Х равномерно распределена на отрезке [3;7]. Найти:
а) плотность распределения вероятностей f(x) и построить ее график;
б) функцию распределения F(x) и построить ее график;
в) M(X),D(X), σ(Х).
Решение: Воспользовавшись формулами, рассмотренными выше, при а=3, b=7, находим:
0 при х<3,
а) f(х)=
при 3≤х≤7,
0 при х>7
Построим ее график (рис.3):
рис.3
б) 0 при х≤3,
F(х)=
при 3<х≤7,
1 при х>7 .
Построим ее график (рис.4):
рис.4
в) M(X)
=
=
=5,
D(X)
=
=
=
,
σ (Х) =
=
=
.
§2. Показательный (экспоненциальный) закон распределения
Определение: Непрерывная случайная величина Х имеет показательный (экспоненциальный) закон распределения с параметром λ>0, если функция плотности распределения вероятностей имеет вид:
0
при х<0,
f(х)= λе-λх при х≥0.
Функция распределения случайной величины Х, распределенной по показательному закону, задается формулой:
0 при х≤3,
F(х)= 1-e-λх при х≥0.
Кривая распределения f (х) и график функции распределения F(х) случайной величины Х приведены на рис.5 и рис.6.
рис.5
рис.6
Математическое ожидание, дисперсия и среднее квадратическое отклонение показательного распределения соответственно равны:
M(X)=
, D(X)=
,
σ (Х)=
Таким образом, математическое ожидание и среднее квадратическое отклонение показательного распределения равны между собой.
Вероятность попадания Х в интервал (a;b) вычисляется по формуле:
Р(a<Х<b)= e-λа- e-λb
Задача №2. Среднее время безотказной работы прибора равно 100 ч. Полагая, что время безотказной работы прибора имеет показательный закон распределения, найти:
а) плотность распределения вероятностей;
б) функцию распределения;
в) вероятность того, что время безотказной работы прибора превысит 120 ч.
Решение: По условию математическое распределение M(X)= =100, откуда λ=1/100=0,01.
Следовательно,
0
при х<0,
а) f(х)= 0,01е -0,01х при х≥0.
б
)
F(x)=
0 при х<0,
1- е -0,01х при х≥0.
в) Искомую вероятность найдем, используя функцию распределения:
Р(X>120)=1-F(120)=1-(1- е -1,2)= е -1,2≈0,3.