Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Аверина-О.В.-Методическое-пособие-теория-вероят...doc
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
440.32 Кб
Скачать

Глава 2. Непрерывная случайная величина

Определение: Непрерывной называют величину, все возможные значения которой полностью заполняют конечный или бесконечный промежуток числовой оси.

Очевидно, число возможных значений непрерывной случайной величины бесконечно.

Непрерывную случайную величину можно задавать с помощью функции распределения.

Определение: Функцией распределения непрерывной случайной величины Х называется функция F(х), определяющая для каждого значения х R

вероятность того, что случайная величины Х в результате испытания примет значение, меньшее х:

F(x)=P(X<x),где х R

Функцию распределения иногда называют интегральной функцией распределения.

Свойства функции распределения:

1)1≤ F(x) ≤1

2)У непрерывной случайной величины функция распределения непрерывна в любой точке и дифференцируема всюду, кроме, быть может, отдельных точек.

3) Вероятность попадания случайной величины Х в один из промежутков (а;b), [а;b), [а;b], равна разности значений функции F(х) в точках а и b,т.е. Р(а<Х<b)= F(b)- F(a)

4)Вероятность того, что непрерывная случайная величина Х примет одно отдельное значение равна 0.

5) F(-∞)=0, F(+∞)=1

Задание непрерывной случайной величины с помощью функции распределения не является единственным. Введем понятие плотности распределения вероятностей (плотность распределения).

Определение: Плотностью распределения вероятностей f(x) непрерывной случайной величины Х называется производная от ее функции распределения, т.е.:

f(x)=F’(x)

Плотность распределения вероятностей иногда называют дифференциальной функцией распределения или дифференциальным законом распределения.

График плотности распределения вероятностей f(x) называется кривой распределения вероятностей.

Свойства плотности распределения вероятностей:

1)f(x) ≥0,при х R

х

2) F(x)= ∫ f(x)dx

-∞

Геометрически функция распределения равна площади фигуры, ограниченной сверху кривой распределения снизу осью ОХ и лежащей левее точки х (рис.1)

b

3) Р(а<Х<b)= ∫ f(x)dx

a

Геометрически полученная вероятность равна площади криволинейной трапеции, ограниченной сверху кривой распределения, снизу осью ОХ, слева и справа прямыми х=а, х=b (рис. 2)

-∞

4) ∫ f(x) dx=1-условие нормировки

+∞

рис.1 рис.2

Задача №1.Случайная величина Х задана плотностью распределения вероятностей:

0 при х≤2,

f(x)= с(х-2) при 2<х≤6,

0 при х>6.

Найти: а) значение с; б) функцию распределения F(х) и построить ее график; в) Р(3≤х<5)

Решение:

+

а) Значение с найдем из условия нормировки: ∫ f(x)dx=1.

Следовательно, -∞

+∞ 2 6 +∞ 6 6

∫ f(x)dx=∫ 0dx+ ∫ c(х-2)dx +∫ 0dx= c∫ (х-2)dx=с(х2/2-2х) =с(36/2-12-(4/2-4))=8с;

-∞ -∞ 2 6 2 2

8с=1;

с=1/8.

х

б) Известно, что F(x)= ∫ f(x)dx

-∞

Поэтому, х

если х≤2, то F(x)= ∫ 0dx=0;

-∞ 2 2 х

если 2<х≤6, то F(x)= ∫ 0dx+∫ 1/8(х-2)dx=1/8(х2/2-2х) = 1/8(х2/2-2х- (4/2-4))=

-∞ -∞ 2

=1/8(х2/2-2х+2)=1/16(х-2)2;

2 6 х 6 6

если х>6, то F(x)= ∫ 0dx+∫ 1/8(х-2)dx+∫ 0dx=1/8∫(х-2)dx=1/8(х2/2-2х) =

-∞ 2 6 2 2

=1/8(36/2-12-(4/2+4))=1/8•8=1.

Таким образом,

0 при х≤2,

F(х)= (х-2)2/16 при 2<х≤6,

1 при х>6.

График функции F(х) изображен на рис.3

рис.3

в) Р(3≤Х<5)=F(5)-F(3)=(5-2)2/16-(3-2)2/16=9/16-1/16=5/16.

Задача №2. Случайная величина Х задана функцией распределения:

0 при х≤0,

F(х)= (3• arctg х)/π при 0<х≤√3,

1 при х>√3.

Найти дифференциальную функцию распределения f(х)

Решение: Т.к. f(х)= F’(x), то

0 при х≤0,

f(х)= (3•(1+х2)) /π при 0<х≤√3,

0 при х>√3.