
- •Основные положения теории бутлерова:
- •1. Положение о химическом строении.
- •2. Положение о зависимости свойств от химического строения.
- •3. Положение о взаимном влиянии атомов.
- •Классификация органических соединений
- •Электронные представления о природе химической связи
- •Электронная структура Схема основного электронного состояния
- •Образование ковалентной связи
- •Гибридизация электронов углерода. - и - связи.
- •Основные характеристики ковалентных связей
- •1. Полярность
- •2. Поляризуемость
- •3. Направленность связей
- •4. Длина связи
- •5. Энергия связи
- •6. Классификация органических реакций по механизму
- •Лекция № 2
- •Алифатические соединения (жирные, ациклические)
- •Способы получения предельных углеводородов
- •Лабораторные способы получения алканов
- •Пространственное строение предельных углеводородов
- •Физические свойства предельных углеводородов
- •Химические свойства предельных углеводородов
- •Получение и свойства алифатических радикалов
- •I тип. Реакция замещения
- •II тип. Реакции окисления
- •III тип. Реакции термического расщепления предельных углеводородов
- •IV тип. Изомеризация предельных углеводородов
- •Лекция 3 алкены
- •Номенклатура
- •Способы получения
- •Физические свойства олефинов
- •Химические свойства олефинов
- •1. Реакции присоединения
- •Эффект Караша
- •Свойства карбкатионов
- •2. Реакции окисления
- •3. Реакции полимеризации
- •4. Реакции аллильного замещения
- •Отдельные представители
- •Лекция 4 алкадиены
- •Способы получения
- •Особенности электронного строения диенов с сопряженными связями
- •Физические свойства
- •Химические свойства
- •1. Реакции присоединения
- •2. Реакции окисления
- •3. Реакции полимеризации
- •Натуральный и синтетический каучук
- •Лекция 5 алкины
- •Лабораторные методы получения ацетиленовых углеводородов
- •II. Реакции окисления
- •III. Реакции полимеризации и конденсации
- •Реакции замещения водорода металлом – образование ацетиленидов
- •Изомерия
- •Номенклатура
- •Способы получения
- •Электронное строение
- •Физические свойства
- •Химические свойства
- •I.Реакции нуклеофильного замещения
- •Реакции отщепления галогена
- •III. Реакции отщепления галогеноводорода
- •Лекция 8 спирты (оксисоединения)
- •Свойства
- •Отдельные представители
- •Многоатомные спирты
- •Способы получения (кроме общих)
- •Физические свойства
- •Химические свойства
3. Реакции полимеризации
Это соединение нескольких или многих молекул в одну без изменения состава, происходящее за счет разрыва двойных связей. Существует два вида полимеризации олефинов:
1. Ступенчатая полимеризация – происходит в присутствии катализаторов (H2SO4, AlCl3), приводит к образованию димеров, тримеров, тетрамеров и т.д., причем на каждой стадии полученный продукт выделяется как устойчивое соединение. Реакция идет по механизму электрофильного присоединения
CH3 C=CH2 - + H+O-SO2OH CH3-C+-CH3 + CH2 -=C CH3
CH3 конц. CH3 СH3
Изобутилен
СH3 CH3 CH3
CH3-C-CH2-C+-CH3
CH3-C-CH=C-CH3
СH3-C-CH2-CH-CH3
CH3 CH3 -H+ CH3 CH3 H2 CH3 CH3
Димер изобутилена изооктан
(октановое число принято за 100)
Образовавшийся димер может снова реагировать с катализатором и затем с олефином, в результате чего образуется тример и т.д. Используется для получения жидких высокооктановых углеводородов.
2. Цепная полимеризация протекает под действием инициаторов или катализаторов по цепному механизму. Низкомолекулярные продукты полимеризации не могут быть выделены, т.к. не фвляются устойчивыми веществами. Реакция приводит к образованию высокомолекулярных соединений.
nR1-CH=CH-R2 (-CH-CH-)n
R1 R2
где n – степень полимеризации, которая составляет десятки и сотни тысяч. Исходное соединение носит название мономер. Высокомолекулярный продукт полимеризации – полимер. Полимеры низкого молекулярного веса (где n не более нескольких тысяч) называются олигомеры. Реакции цепной полимеризации могут протекать как по свободно-радикальному, так и по ионному механизму.
Примером свободно-радикальной полимеризации является получение оксиэтилена высокого давления (способ открыт в 1933 г.).
NCH2=CH2
+ 0,1% O2
(-CH2-CH2-)n
190-2100C
Кислород способствует инициированию реакции за счет образования перекисных радикалов. Если обозначить эти радикалы, инициирующие реакцию R, то механизм реакции будет выглядеть так:
R.
+ CH2=CH2
R-CH2-CH2.
R-CH2-CH2-CH2-CH2.
и т.д. до обрыва цепи
Ионная цепная полимеризация наблюдается в присутствии металлов. металлических катализаторов. катализаторов системы Циглера*. Пример – получение полиэтилена низкого давления.
NCH2=CH2
(-CH2-CH2-)n
R=1-10 атм
T0=-70+150C
Механизм действия катализатора Циглера. Полярная связь С-Al катализатора легко разрушается гетеролитически.
- +
+CH2=CH
CH3
(С2Н5)Al+ C2-H5 + C -H2=C +H (C2H5)2Al+-CH2--CH-C2H5
CH3 CH3
(C2H5)2Al-CH2-CH-CH2-CH-C2H5
CH3 CH3
Полимеры, образованные в результате ионной полимеризации, отличаются правильным (регулярным) химическим и пространственным строением цепи и обладают большей кристалличностью, жесткостью и прочностью.
Все эти полимеры являются по существу предельными углеводородами чрезвычайного высокого молекулярного веса. Как и все предельные углеводороды, они устойчивы к окислителям. к действию концентрированных кислот и других агрессивных реагентов.
Теломеризация – разновидность цепной полимеризации, отличается тем, что процесс проводится с искусственным ранним обрывом цепи на стадии образования низкомолекулярных полимеров, содержащих 3-4 молекулы мономера. Состав продуктов теломеризации отличается от состава мономера, т.к. часть молекул растворителя, вызывающих обрыв цепи, входит в молекулу теломера. Например, теломеризация этилена в присутствии ССl4.
R. + CCl4 RCl + .CCl3 . CCl3 + CH2=CH2. CCl3-CH2-CH2.
CCl3-CH2-CH2-CH2-CH2.
CCl3-CH2-CH2-CH2-CH2-CH2-CH2.
.CCl3
+ CCl-(CH2-CH2)3-Cl