
- •Введение
- •Цели и задачи курса
- •1. Общие сведения о вычислительных машинах и вычислительных системах
- •1.1. Основные понятия и определения
- •1.2. Классификация эвм по назначению и типу
- •1.3. Типы эвм
- •1.4. Основные принципы организации вычислительных машин и систем
- •1.5. Основные характеристики вычислительных машин и систем
- •1.5.1 Стоимость и цена аппаратного обеспечения
- •1.5.2. Производительность вычислительных машин и систем
- •Контрольные вопросы
- •2. Фукциональный состав и назначение основных устройств вм
- •2.2. Назначение шин, шина с тремя состояниями
- •2.3. Назначение устройств ввода-вывода, способы информационного обмена
- •Контрольные вопросы
- •3. Организация процессоров
- •3.1. Введение в функциональную организацию процессора
- •3.2. Операционный блок
- •3.3. Блок управления
- •3.4. Устройства управления процессора
- •3.4.1. Классификация уу
- •3.4.2. Аппаратные уу
- •3.4.3. Микропрограммные уу
- •3.5. Интерфейсный блок
- •3.6. Назначение стека
- •Контрольные вопросы
- •4. Система команд и адресация данных
- •4.1. Группы команд
- •4.2. Адресация операндов
- •4.3. Методы адресации
- •5. Память вычислительных машин
- •5.1. Иерархическая организация системы памяти
- •5.2. Иерархическая структура зу
- •5.3. Основные характеристики зу
- •5.4. Организация связи оп с процессором
- •5.5. Ассоциативные зу
- •Контрольные вопросы
- •6. Принципы обмена данными в вычислительных машинах. Интерфейсы вычислительных машин, организация прерываний
- •6.1. Шины
- •6.1.1. Синхронная шина
- •6.1.2. Пересылка данных за несколько тактов
- •6.1.3. Асинхронные шины
- •6.1.4. Заключительные замечания
- •6.2. Назначение и классификация шинных интерфейсов
- •6.3. Организация и обмен данными между периферийными устройствами и вычислительным ядром системы
- •6.4. Организация прерываний
- •6.4.1. Программные прерывания
- •Команда int
- •6.4.2. Обработка прерываний
- •6.4.3 Таблица векторов прерываний
- •6.4.4. Запуск обработчиков прерываний
- •6.5. Последовательная передача данных
- •7. Вычислительные системы параллельной обработки данных
- •7.1. Параллельная обработка как архитектурный способ повышения производительности
- •7.2. Параллелизм и конвейеризация – способы параллельной обработки данных
- •7.2.1. Параллельная обработка данных (параллелизм)
- •7.2.2. Конвейеризация
- •7.3. Классификация архитектур вычислительных систем
- •7.4. Мультипроцессоры и мультикомпьютеры
- •7.5. Классификация мультипроцессорных систем по способу организации основной памяти
- •7.6. Закон Амдала (эффективность параллельных программ)
- •8. Компьютер ibm pc и операционная система ms dos
- •8.1.Архитектурные особенности процессоров семейства ia-32
- •8.2. Организация памяти компьютера ibm pc, работающего под управлением ms dos
- •Видеопамять
- •Пзу bios
- •Системные ресурсы компьютера
- •8.3. Основы программирования на языке Ассемблера
- •8.3.1. Выполнение программ
- •8.3.2. Написание, компиляция и отладка программы
- •8.3.3. Дополнительные средства ассемблера
- •9. Темы заданий для контрольной работы
- •Тема 1. Архитектура процессора Intel 8086.
- •Контрольные вопросы
- •9.1. Аппаратная модель процессора 8086
- •Программная модель процессора
- •Тема 2. Структура ехе- и сом- программы. Вывод на экран.
- •9.2. Структура программы на языке Ассемблера.
- •9.3. Вывод информации на экран
- •Тема 3. Циклы, ввод с клавиатуры.
- •Тема 4. Ввод чисел. Перевод чисел в различные системы счисления.
- •9.4. Перевод чисел в различные системы счисления
- •Тема 5. Работа с прерываниями: перехват и восстановление.
- •Варианты задания
- •Контрольные вопросы
- •Тема 6. Программирование таймера 8254 и генерация звука
- •Программирование звукового канала таймера.
- •9.7. Инициализация таймера
- •9.8. Назначение каналов таймера в ibm pc
- •9 .9. Генерация тона.
- •9.10. Варианты задания
- •Тема 7. Ответы на контрольные вопросы по лекционному курсу
- •Вариантов заданий Таблица 9.4
- •Литература
5.4. Организация связи оп с процессором
Максимальный размер оперативной памяти, который может использоваться процессором, определяется разрядностью его шин адреса и данных. Если разрядность шины адреса процессора - n бит, а шины данных - k бит, то максимальный размер памяти составляет 2n k-разрядных слов. За один шинный цикл обращения к памяти в процессор пересылается k бит данных. Поэтому процессор с 16-разрядной шиной адреса, может адресовать память объемом до 216 - 64К k-разрядных слов, процессор, генерирующий 32-разрядные адреса, может использовать память объемом до 232 = 4Г k-разрядных слов, а для процессоров с 40-разрядными адресами доступна память объемом до 240 = 1Т единиц памяти.
Кроме шин адреса и данных для обмена информацией процессора и памяти используется шина управления. В простейшем случае она должна содержать линию для управления типом передачи данных: чтение или запись - Чт/Зп (Read/Write# - R/W#), которая часто дополняется линией готовности памяти к обмену (RDY или REDY). Могут использоваться и другие линии, с помощью которых, например, задается количество пересылаемых за один шинный цикл байт данных. Соединение процессора и ОП схематически показано на рисунке 5.2.
Рис. 5.2. Организация связи ОП с процессором
Чтобы считать данные из ОП, процессор сначала выставляет адрес на шину адреса и устанавливает (с некоторой задержкой) линию R/W# в состояние “Лог. 1”. В ответ память помещает содержимое адресованной ячейки на линии данных и сообщает об этом процессору активизацией сигнала RDY. После получения сигнала RDY k-разрядное слово с шины данных вводится в процессор.
Для того чтобы записать данные в память, процессор выставляет адрес на ША, а данные- на ШД после чего устанавливает линию R/W# в состояние “Лог. 0” (знак # показывает, что активным уровнем сигнала W является “Лог. 0” или низкий уровень), указывая таким образом, что выполняется операция записи в память.
Если в операциях чтения (записи) производится обращение по последовательным адресам ОП, может быть выполнена операция блочной (пакетной) пересылки, при которой за один шинный цикл осуществляется пересылка нескольких (обычно 4-х) k-разрядных слов. При пакетных передачах повышается скорость обмена, при этом можно ограничиться выдачей на ША только адреса первого слова пакета.
5.5. Ассоциативные зу
В современных вычислительных системах широко используются операция поиска информации. При использовании обычной памяти с адресным принципом доступа к данным эта операция занимает много времени, поскольку операнды считываются из памяти поочередно (последовательно), после чего над каждым операндом производится операция сравнения. Это обстоятельство является фактором, увеличивающим время поиска. Решение проблемы заключается в том, чтобы эти операции выполнялись одновременно (параллельно). Принцип ассоциативного поиска поясняет рисунок 5.3.
|
Рис.5.3. Принцип ассоциативного поиска информации
С целью ускорения поиска данных используется адресация по содержанию, которая осуществляется путем одновременного доступа ко всем ячейкам памяти. Сущность принципа адресации по содержанию заключается в следующем (см. рис. 5.3). Имеется массив данных емкостью N слов. Требуется найти в массиве все слова, которые начинаются с символа "А" и кончаются символом "Н". В этом случае аргументом поиска (ключевым словом) является слово А***Н, где значком * отмечены разряды, не влияющие на результат поиска. Запоминающий массив на аппаратном уровне строится таким образом, что бы на выходе ячеек памяти, содержимое которых совпадает со значением поступившего аргумента поиска, появлялся сигнал - указатель совпадений. В дальнейшем по выработанным сигналам выполняется выборка содержимого тех ячеек памяти, в которых произошло совпадение.
В виду высокой стоимости и сложности технической реализации такого способа адресации, ассоциативная память используется не везде, а в технически обоснованных случаях, например, в устройствах буферизации данных при выполнении обменных операций (в КЭШ - памяти и подобных устройствах). Кроме того, существуют специальные ассоциативные процессоры (сопроцессоры) где аппаратно реализуются операции свертки, поиска, сортировки, часто встречающиеся в программах пользователя или операционной системы.
В параллельных ассоциативных ЗУ (АЗУ) процесс поиска данных по содержанию организуется следующим образом. Каждая ячейка модуля памяти АЗУ обеспечивает выполнение функций приема, хранения данных, сравнения хранимой информации с аргументом поиска и выработку сигналов о результате сравнения. Модуль памяти АЗУ организован таким образом, что на каждом такте работы аргумент поиска поступает параллельно во все ячейки памяти. В результате в модуле памяти АЗУ выполняется массовая операция сравнения содержимого ячеек памяти с аргументом поиска и установка - сигналов указателей о совпадении на выходе.