
- •Устройство, принцип действия и основные характеристики дпт
- •1.1. Устройство, принцип действия и основные свойства дпт
- •1.2. Механические характеристики дпт в двигательном режиме.
- •1.3. Торможение дпт. Механические характеристики дпт в тормозных режимах.
- •2. Регулирование скорости вращения дпт.
- •3. Устройство, принцип действия и основные свойства асинхронных двигателей.
- •Механические характеристики ад в двигательном режиме.
- •5. Тормозные режимы ад. Механические характеристики ад в тормозных режимах
- •6. Регулирование скорости вращения асинхронного двигателя изменением скольжения
- •Принципы регулирования
- •Частотное регулирование скорости ад. Особенности частотного регулирования скорости
- •II. Регулирование ад изменением частоты u-я, подводимого к статору.
- •8. Ад с улучшенными пусковыми свойствами и их использование в нефтяной промышленности
- •1. Двухклеточный двигатель
- •2. Глубокопазный двигатель
- •9. Режимы работы электроприводов и принципы выбора мощности электродвигателей.
- •I. Выбор мощности электропривода
- •10. Основные характеристики сд (механические, угловые, u-образные)
- •11. Использование сд для компенсации реактивной мощности
- •12. Вентильные преобразователи и их использование в электроприводах постоянного тока
- •13. Пуск сд. Особенности пуска сд на нефтеперекачивающих станциях Пуск синхронных двигателей
- •14.Системы возбуждения сд и их основные свойства. Автоматическое регулирование возбуждения сд.
- •15. Термическое действие токов короткого замыкания. Термическая стойкость электрических аппаратов.
- •Практически все тепло идет на нагрев проводника
- •16. Динамическое действие токов короткого замыкания. Электродинамическая стойкость электрических аппаратов.
- •17. Способы и устройства гашения дуги в электрических аппаратах.
- •Гашение дуги
- •Основные способы гашения дуги в аппаратах выше 1 кВ
- •18. Коммутационные аппараты. Их устройство и выбор.
- •Выключатели высокого напряжения
- •20. Расчет установившихся токов короткого замыкания.
- •Свойства электрических сетей в зависимости от способа заземления нейтрали
- •22. Потери мощности и энергии в системе электроснабжения и пути их снижения.
- •Для осветительных нагрузок ........... 1500—2000
- •Тогда суммарные активные потери электроэнергии
- •Потери активной и реактивной электроэнергии в трех фазах
- •23. Мероприятия по снижению потребления реактивной мощности.
- •24. Регулирование напряжения в электрических сетях предприятий отрасли. Регулирование напряжения трансформаторов
- •25. Трансформаторные подстанции и распределительные устройства, их классификация и схемы.
- •Главные схемы подстанций
- •27. Надежность электроснабжения. Мероприятия по ее обеспечению. Категории электроприемников
- •28. Максимальная токовая защита (принцип действия, устройство, принцип выбора времени срабатывания). Выбор тока срабатывания мтз. Схемы мтз (совмещённая и разнесённая).
- •29. Сигнализация и защита от замыканий на землю в сетях с изолированной нейтралью
- •30. Виды повреждений и ненормальных режимов работы трансформаторов. Основные и резервные защиты трансформаторов.
- •31. Повреждение и ненормальные режимы работы электродвигателей. Виды защит ад.
- •I. Автоматическая частотная разгрузка.
- •II. Автоматическая разгрузка по частоте
- •35. Сравнительный анализ асинхронных и синхронных электроприводов буровых установок
- •36. Назначение и конструкция электромагнитных муфт. Область их применения в
- •37. Электродвигатели и блоки управления электроприводами станков-качалок.
- •Перспективы регулируемого эп ск
- •Энергетические показатели электроприводов насосной нефтедобычи
- •Самозапуск электродвигателей
- •42. Электропривод автоматических регуляторов подачи долота
- •44. Математическое моделирование электромеханических переходных процессов в электроприводах
- •45. Автоматизированный электропривод с частотным преобразователем с шим.
- •Аэп с синхронными и вентильными двигателями
- •47. Автоматизированные каскадные электроприводы переменного тока. Классификация, устройство и принцип действия.
- •48. Следящие системы управления электроприводами и их примеры применения в отрасли
- •50. Векторное управление асинхронным эд
23. Мероприятия по снижению потребления реактивной мощности.
Делятся на две группы:
естественные: без специальных компенсирующих устройств (КУ);
искусственные: с использованием специальных КУ.
Естественные мероприятия:
Использование возможностей установленных СД;
Поддержание коэффициента загрузки АД близким к 1;
Отключение ЭД на Х.Х.;
Своевременный и качественный ремонт;
Изменение графика нагрузки ЭД (изменение режима работы) (Э; cos(Э;
Обеспечение качества электроэнергии;
Замена ненагруженных ЭД, двигателями меньшей мощности и замена на современные, с большим cos(;
Исключение работы трансформаторов на Х.Х.;
Переключение нагрузки на один трансформатор при 2-х трансформаторной подстанции;
Качественный ремонт трансформаторов.
Искусственные мероприятия:
Применение синхронных компенсаторов (СК);
Применение батарей статических конденсаторов (БСК);
Применение СД как источников реактивной мощности;
Управляемые источники реактивной мощности.
Основные потребители
Q: -АД
60-70%
Трансформаторы-QT=QXX+2QK
-
на создание IХХ
основного магн. потока. QT=(20-30%)Q.
-
создание потока рассеяния
Для одного
потребителя потребление Q
хар-ся
Для группы –
коэффициент реактивной мощности
Причины нецелесообразности передачи Q по элементам сети:
Дополнительные потери в сети
при U вводят дополнительные средства регулирования U.
Возникают дополнительные потери
с Р растет стоимость потерь в ЭС.
Увеличивается ток по элементам сети
из-за Р и I приходиться завышать пропускную способность линий и трансформаторов
Синхронные компенсаторы.
СК-СД с облегченным валом, уменьшиным воздушным зазором.
Выпускаются на
QНОМ
10
МВАр. Применяются на крупных узлах
нагрузки.
+ плавное регулирование мощности;
независимость от U сети.
- большая мощность;
необходим мощный фундамент;
сложность системы охлаждения СУ
сравнительно большие потери Р=0,15-0,5 кВт/кВАр
БСК- силовые конденсаторы, предназначены для КРМ. (ККУ, УК, КУБН)
Корпус заполняется маслом КМ – до -40С или соволом (КС) до -10С-меньшие габариты при одинаковых мощностях QБАТ=3mnQKKПОТР
U:220, 380, 660, 1050В.
Q~U2,
не выдерживают повышение напряжения до 110%
остаточный разряд
ступенчатое регулирование
24. Регулирование напряжения в электрических сетях предприятий отрасли. Регулирование напряжения трансформаторов
Для нормальной работы потребителей необходимо поддерживать определенный уровень напряжения на шинах подстанций. В электрических сетях предусматриваются способы регулирования напряжения, одним из которых является изменение коэффициента трансформации трансформаторов.
Известно, что коэффициент трансформации определяется как отношение первичного напряжения ко вторичному, или
где w1, w2 — число витков первичной и вторичной обмоток соответственно.
Отсюда U2 = U1w2/w1
Обмотки трансформаторов снабжаются дополнительными ответвлениями, с помощью которых можно изменять коэффициент трансформации. Переключение ответвлений может происходить без возбуждения (ПБВ), т. е. после отключения всех обмоток от сети или под нагрузкой (РПН).
Устройство ПБВ позволяет регулировать напряжение в пределах ±5 %, для чего трансформаторы небольшой мощности кроме основного вывода имеют два ответвления от обмотки высшего напряжения: +5% и —5% (рис. 2.39, а). Если трансформатор работал на основном выводе 0 и необходимо повысить напряжение на вторичной стороне U2, то, отключив трансформатор, производят переключение на ответвление — 5%, уменьшая тем самым число витков w1.
Рис. 2.39. Схема регулирования напряжения ПБВ:
а — ответвления вблизи нулевой точки обмотки + 5 % с трехфазным переключателем на три положения; б — ответвления в середине обмотки ±2x2,5% с однофазными переключателями на пять положений (фаза А); 1 — неподвижный контакт; 2 — сегмент контактный; 3 — вал переключателя; 4 — контактные кольца
На трансформаторах средних и больших мощностей предусматриваются четыре ответвления + 2 х 2,5%, переключение которых производится специальными переключателями барабанного типа, установленными отдельно для каждой фазы (рис. 2.39, б). Рукоятка привода переключателя выведена на крышку трансформатора.
При замыкании роликом переключателя контактов А4-А5 трансформатор имеет номинальный коэффициент трансформации. Положения А3-А2 и А2-А3 соответствуют увеличению коэффициента трансформации на 2,5 и 5%, а положения А5-А6 и А6-А5, -уменьшению на 2,5 и 5%.
Устройство ПБВ не позволяет регулировать напряжение в течение суток, так как это потребовало бы частого отключения трансформатора для производства переключений, что по условиям эксплуатации практически недопустимо. Обычно ПБВ используется только для сезонного регулирования напряжения.
Регулирование под нагрузкой (РПН) позволяет переключать ответвления обмотки трансформатора без разрыва цепи. Устройство РПН предусматривает регулирование напряжения в различных пределах в зависимости от мощности и напряжения трансформатора (от +10 до ±16% ступенями приблизительно по 1,5%) .
Регулировочные ступени выполняются на стороне ВН, так как меньший по значению ток позволяет облегчить переключающее устройство. Для расширения диапазона регулирования без увеличения числа ответвлений применяют ступени грубой и тонкой регулировки (рис. 2.40). Наибольший коэффициент трансформации получается, если переключатель П находится в положении II, а избиратель И - на ответвлении 6. Наименьший коэффициент трансформации будет при положении переключателя I, а избирателя — на ответвлении 1.
На рис. 2.40, б показана схема расположения элементов переключающего устройства РНТ-13, применяемого на трансформаторах средней мощности.
Переход с одного ответвления регулировочной обмотки на другое осуществляется так, чтобы не разрывать ток нагрузки и не замыкать накоротко витки этой обмотки. Это достигается в специальных переключающих устройствах с реакторами или резисторами. Схема с резисторами (рис. 2.41) обладает рядом преимуществ перед схемой с реакторами и получает все более широкое применение. На рис. 2.41 показаны регулировочная часть обмотки de и переключающее устройство.
Последовательность работы контакторов и избирателей показана в таблице к рис. 2.41. В исходном положении 0 трансформатор работает на ответвлении 5, ток нагрузки проходит через контакт К1. Допустим, что необходимо уменьшить число витков в регулировочной обмотке, т. е. перейти на ответвление 4. Последовательность работы элементов РПН в этом случае будет следующей: обесточенный избиратель И2 переводится в положение 4, затем отключается К1 и ток нагрузки кратковременно проходит по R1 и К2; при третьей операции замыкается КЗ, при этом половина тока нагрузки проходит по R1 и К2, а половина - по R2 и КЗ, кроме того, витки регулировочной обмотки 5-4 оказываются замкнутыми через R1 и R2 и по ним проходит ограниченный по значению циркулирующий ток; при следующих операциях (4 и 5) размыкается К2 и замыкается К4, при этом ток нагрузки проходит по регулировочной обмотке на ответвление 4, избиратель И2, контакты К4 к выводу 0.
В переключателях данного типа используются мощные пружины, обеспечивающие быстрое переключение контактов контактора (<0,15 с), поэтому токоограничивающие сопротивления Rl, R2 лишь кратковременно нагружаются током, что позволяет уменьшить их габариты. Контакторы размещаются в герметизированном баке с маслом. Управление РПН может осуществляться дистанционно со щита управления вручную или автоматически.
В современных устройствах РПН для коммутации тока находят применение вакуумные дугогасительные камеры. Благодаря этому трансформаторное масло не используется в качестве дугогасительной среды и не требуется его смена в процессе эксплуатации. Переключающие устройства РНТА235/1000 применяются на преобразовательных трансформаторах с интенсивным режимом работы переключений.
Рис. 2.40. Устройство РПН трансформаторов:
а - схема включения регулирующих ступеней; Ab - основная обмотка; be - ступень грубой регулировки; de - ступени плавной регулировки; Я - переключатель; И - избиратель; б — переключающее устройство РНТ-13; 1-переключатель; 2 - горизонтальный вал; 3 - кожух контакторов; 4 - вертикальный вал; 5 - коробка привода; 6 - бак трансформатора
Рис. 2.41. Схема и последовательность переключений устройства РПН с токоограничивающими сопротивлениями
Дальнейшим совершенствованием РПН является применение тиристорных переключателей. Тиристоры срабатывают в моменты переходов тока нагрузки через нуль и последовательно включают необходимую комбинацию вторичных обмоток.
Регулирование напряжения в автотрансформаторах имеет некоторую особенность. Если ответвления выполнить в нейтральной точке (рис. 2.42, а). то это позволяет облегчить изоляцию переключающего устройства и рассчитать его на меньший ток, так как в общей обмотке автотрансформатора проходит разность токов. Такое регулирование называется связанным, т. е. при переключении ответвлений одновременно меняется количество витков ВН и СН. Это приводит к резким изменениям индукции в сердечнике и колебаниям напряжения на обмотке НН.
|
|
Рис. 2.42. Схема регулирования напряжения в автотрансформаторе (показана одна фаза): а — ответвления в нейтрали (без реверса); о — ответвления на линейном конце обмотки СН (с реверсом)
|
Рис. 2.43. Схема включения п:-следовательного регулирово1--ного трансформатора в негь автотрансформатора
|
Независимое регулирование в автотрансформаторе можно осуществить с помощью регулировочной обмотки на линейном конце среднего напряжения (рис. 2.42, б). В этом случае переключающее устройство должно быть рассчитано на полный номинальный ток, а изоляция его - на полное напряжение средней обмотки.
Такие переключающие устройства на ток 2000 А с изоляцией классов 110 и 220 кВ позволяют обеспечить РПН для автотрансформаторов больших мощностей. Регулирование осуществляется с помощью трех однофазных регуляторов, имеющих электропривод с автоматическим управлением.
Для регулирования напряжения под нагрузкой на мощных трансформаторах и автотрансформаторах применяются также последовательные регулировочные трансформаторы (рис. 2.43). Они состоят из последовательного трансформатора 2, который вводит добавочную ЭДС в основную обмотку автотрансформатора 1, и регулировочного автотрансформатора 3, который меняет эту ЭДС. С помощью таких трансформаторов можно изменять не только напряжение (продольное регулирование), но и его фазу (поперечное регулирование). Устройство таких трансформаторов значительно сложнее, чем РПН, поэтому они дороже и применение их ограничено.
Одним из видов последовательных регулировочных трансформаторов являются линейные регуляторы, которые включаются последовательно в линию или в цепь трансформатора без РПН, обеспечивая регулирование напряжения в пределах ±10 ч- 15%.
Широкое применение линейные регуляторы находят на подстанциях с автотрансформаторами (рис. 2.44). На стороне СН регулирование напряжения обеспечивается встроенным в автотрансформатор РПН, а на стороне НН устанавливается регулировочный трансформатор 2, снабженный автоматическим регулированием напряжения. Регулировочные трансформаторы типа ЛТМ выпускаются мощностью 1,6 — 6,3 MBА на напряжение 6-10 кВ, типов ЛТМН, ЛТДН-16-100 MBА на напряжение до 35 кВ .
Рис. 2.44. Включение peгулировочного трансфера тора со стороны НН авт;-трансформатора