Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ВСЕ ОТВЕТЫ.doc
Скачиваний:
3
Добавлен:
01.03.2025
Размер:
7.31 Mб
Скачать

14.Системы возбуждения сд и их основные свойства. Автоматическое регулирование возбуждения сд.

I. Системы возбуждения с генераторами постоянного тока. Классическая си­стема возбуждения синхронных машин, широко используемая и в настоящее время, состоит из возбудителя в виде генератора параллельного возбуждения на общем валу с синхронной машиной (см. рис. 34-1). У тихоходных машин мощ­ностью до Рн »5000 квт для уменьшения веса и стоимости возбудителей по­следние иногда соединяют с валом синхронной машины с помощью клиноременной передачи.

Гидрогенераторы также обычно имеют возбудитель на одном валу с генера­тором. Однако при этом у мощных тихоходных генераторов с nН== 60 — 150 об/мин размеры и стоимость возбудителя в связи со значительной его мощностью и тихоходностью получаются большими. Кроме того, тихоходные возбудители вслед­ствие своих больших размеров обладают большой электромагнитной инерцией, что снижает эффективность автоматического регулирования и форсировки возбуж­дения. Поэтому применяют также системы возбуждения в виде отдельного быст­роходного агрегата (n== 750 — 1500 об/мин), состоящего из асинхронного дви­гателя и генератора постоянного тока. Асинхронный двигатель при этом получает питание от специального вспомогательного синхронного генератора, располо­женного на одном валу с главным гидрогенератором, а в некоторых случаях — с шин собственных нужд гидростанции или с выводов главного гидрогенератора. В последнем случае возбудительный агрегат подвержен влиянию аварий в энергосистеме (короткие замыкания и пр.), и поэтому для повышения его надежности приводные асинхронные двигатели выполняют с повышенным максимальным моментом ( ), а иногда эти агрегаты снабжают также маховиками. В виде отдельных возбудительных агрегатов выполняются также агрегаты ре­зервного возбуждения электростанций, служащие для резервирования собственных возбудителей генераторов в случае аварий и неисправностей.

Турбогенераторы мощностью до Рн== 100 тыс. квт также обычно имеют возбудители в виде генераторов постоянного тока на своем валу. Однако при Рн > 100 тыс. квт мощность возбудителей становится настолько большой, что их • выполнение при nн= 3000 — 3600 об/мин по условиям коммутационной надеж-ности становится затруднительным или даже невозможным. При этом приме­няются разные решения. Например, за границей широко используются возбу-дители со скоростью вращения nн== 750 — 1000 об/мин, соединяемые с валом турбогенератора с помощью редуктора, а также возбудительные агрегаты с асин­хронными двигателями, получающими питание с шин станции или с выводов генератора.

Применяются также некоторые разновидности систем возбуждения с маши­нами постоянного тока. Например, мощные возбудители крупных машин иногда имеют подвозбудители ,которые служат для возбуждения возбудителя.

Регулирование системы возбуждения при этом производится в цепи возбуждении подвозбудителя, в которой протекает малый ток. Этим достигается снижение мощности и веса аппаратуры управления и регулирования.

Компаундированная система возбуждения с возбудителем постоянного тока. В современных системах возбуждения широко применяется принцип компаундирования, т. е. автоматическое изменение н. с. возбуждения при и ш нении тока нагрузки синхронного генератора, подобно тол как это происходит в генератоpax постоянного тока со смешанным возбуждением при согласном включении последовательной обмотки возбуждения. Так как в обмотке якоря синхронной машины протекает переменный ток, а в обмотке возбуждения 2—постоянный ток, то в схемах компаундирования синхронных машин применяются полупроводниковые выпрямители.

Система возбуждения с токовым компаундированием

В приведенной принципиальной схеме компаундированной системы возбуждения с возбудителем постоянного тока обмотка возбуждения возбудителя 4 подключена к якорю возбудителя 3 с реостатом 6 и, кроме того, к выпрямителям 9, получающим питание от последовательных трансформаторов 7.

На холостом ходу генератора обмотка 4 получает питание только от якоря 3. По мере увеличения тока нагрузки генератора 1 напряжение вторичной обмотки трансформатора 7 будет расти, и уже при небольшой нагрузке это напряжение выпрямленное выпрямителем 9, сравняется с напряжением обмотки 4. При дальнейшем увеличении нагрузки обмотка 4 будет подпитываться от трансформатора 7 и поэтому ток этой обмотки и ток возбуждения генератора if будут расти с увеличением нагрузки.

При увеличении сопротивления установочного реостата 8 напряжение, подаваемое на выпрямители 9, и компаундирующее действие трансформатора 7 будут расти. При коротких замыканиях компаундирующее устройство осу­ществляет форсировку возбуждения.

Компаундирующее действие схемы зависит только от величины тока I и не зависит от его фазы. Поэтому при индуктивной нагрузке это действие слабее, чем при активной нагрузке. Такое компаундирование называется токо­вым, и при этом постоянство напряжения U в пределах диапазона нормальных нагрузок удается сохранять с точностью до ± (5—10)% . Такая точность для сов­ременных установок недостаточна, и поэтому в схемах применяется дополнительный корректор или автоматический регулятор напряжения 11, кото­рый соединен с помощью трансформатора 10 c зажимами генератора, а также с установочным реостатом 8. Регулятор 11 реагирует на изменения напряжения U и тока I и питает постоянным током дополнительную обмотку возбуждения возбудителя 5. Он состоит из статических элементов (магнитный усилитель, насыщенный трансформатор, полупроводниковые выпрямители и др.), и подроб­ности его устройства здесь не рассматриваются. Подобная система возбуждения широко применяется для генера­торов мощностью до 100 тыс.квт.

Система возбуждения с возбудителями переменного тока и выпрямителями

Система возбуждения с генераторами переменного тока и выпрямителями.

Как указывалось выше, для мощных гидро- и турбогенераторов системы возбуж­дения с возбудителями постоянного тока, находящимися на одном валу с генера­торами, становятся неэкономичными и даже невыполнимыми. В этих случаях применяются системы возбуждения с генераторами переменного тока и управляе­мыми или неуправляемыми выпрямителями (рис. 40-3).

Схема рис., а положена в основу системы возбуждения гидрогенера­торов Волжских, Братской и Красноярской ГЭС, причем вспомогательный син­хронный генератор нормальной частоты 3 и возбудитель 7 расположены на одном валу с главным генератором 7, а ионный выпрямитель 5 с одноанодными венти­лями имеет сеточное управление от регулятора возбуждения сильного действия. Гашение поля осуществляется переводом выпря­мителя 5 в инверторный режим для передачи мощности от обмотки возбужде­ния главного генератора 2 к вспомогательному генератору 3.

Схема применяется заводом «Электросила» для турбогенераторов мощностью 150 тыс. квт и выше. В этой схеме обмотка возбуждения 2 глав­ного генератора 1 получает возбуждение от индукторного генератора (возбуди­теля) 3 частотой 500 гц через кремниевые выпрямители 5. Генератор 3 имеет две обмотки возбуждения: обмотку независимого возбуждения 4, получающую пита­ние от вспомогательного генератора (подвозбудителя) 9 через выпрямители 5, и обмотку последовательного самовозбуждения 6. Генератор 9 имеет полюсы в виде постоянных магнитов. Генераторы 3 и 9 расположены на одном валу с главным генератором 1. Индукторный генератор не имеет обмоток на роторе и поэтому очень надежен в работе. Параллельно к обмотке его якоря присоединена трехфазная индуктивная катушка (дроссель) 10, подмагничиваемая постоянным током. Катушка 10 потребляет от генератора 8 индуктивный ток, и так, как при f == 500 гц индуктивное сопротивление обмотки якоря генератора велико, то напряжение на ее зажимах сильно зависит от тока катушки 10. Пуп м регулирования тока подмагничивания катушки 10 достигается быстрое регулирование напряжения генератора 3 и тока возбуждения if. Обмотка возбуждения 6 способствует форсировке возбуждения при коротких замыканиях за счет действия апериодического переходного тока в обмотке возбуждения 2.

Наиболее мощные современные турбогенераторы имеют if == 5000 — 10000а, и при этом даже работа контактных колец со щетками становится затруднительной. Поэтому в настоящее время строятся также генераторы с бесконтактными системами возбуждения. Такую систему можно выполнить, если обмотку якоря 8 генератора переменного тока поместим

Система самовозбуждения с фазовым компаундированием

на его роторе, укрепленном на валу главного генератора 7, а обмотку возбуждения 4 поместить на статоре. Полупроводниковые выпрямители 5 при этом укрепляются на диске, который также укреплен на валу генератора 1 и вращаете я вместе с его ротором и обмоткой возбуждения 2. Задача регулирования тока if в этом случае возлагается на подвозбудителъ 7—8, который также можно выполнить в виде бесконтактного генератора переменного тока. Подобные системы возбуждения весьма перспективны, но имеют тот недостаток, что гашение поля можно осуществить только в цепи обмотки 4 и в этом случае поле главного генератора гасится относительно медленно.

Компаундированные генераторы с самовозбуждением. Выше рассматривались независимые системы возбуждения, в которых вся энергия или ее часть для возбуждения синхронного генератора получалась от возбудителей в виде машин постоянного или переменного тока. Наряду с ними применяются также системы самовозбуждения, в которых эта энергия получается из цепи якоря самого гене­ратора. Особенно широко такие системы возбуждения применяются для генера­торов малой и средней мощности, работающих в автономных системах (лесо­разработки, транспортные установки и т. д.). В последние годы системы само­возбуждения все чаще начинают применять также для крупных генераторов, работающих в мощных энергосистемах, и для синхронных двигателей. При этом обычно используется также принцип компаундирования.

Вторичная э. д. с. параллельного трансформатора 3 про­порциональна U, а вторичная э. д. с. последовательного трансформатора 5 пропорциональна /. Вторичные обмотки этих трансформаторов включены парал­лельно и

Ток возбуждения if If зависит не только от величины тока нагрузки /, но и от его фазы, вследствие чего схема называется схемой фазового компаундирования. Это позволяет усиливать компаундирующее действие системы возбуждения при индуктивной нагрузке генератора, поскольку индуктивная

Схемы замещения системы самовозбуждения с фазовым компаундированием

составляющая тока нагрузки генератора вызывает наибольшее падение напря­жения.

Предположим, что первичные обмотки трансформаторов 3 и 5 приведены к вторичным, сопротивления этих трансформаторов и выпрямителей 6 равны нулю и сопротивление обмотки возбуждения 2, приведенной к стороне пере­менного тока, равно .

Пусть рассматриваемый генератор яв­ляется неявнополюсным. Тогда его векторная диаграмма имеет вид, изображенный на рис. 40-6 сплошными линиями. Так как U' и Ii пропорциональны U и I и сов­падают с ними по фазе (или сдвинуты относительно них на 180°), то схеме рис. 40-5 б и равенству (40-2) соответствует векторная диаграмма, изображенная на рис. 40-6 штриховыми линиями. Из этого рисунка следует, что при соответствующем выборе коэффициентов транс­формации трансформаторов 3 и 5 и сопротивления индуктивной катушки 4 векторные диаграммы рис. 40-6 будут подобны. Поэтому при U == const и при любой величине и фазе I будет Uf Е и, согласно (40-2), If Е, т.е. при любой нагрузке ток возбуждения if будет индуктировать такую э. д. с. А, что сохра­няется U == const.

При XL=0 компаундирование будет отсутствовать. В этом случае при увеличении I трансформатор 5 будет брать на себя нагрузку трансформатора 3 и ток If увеличиваться не будет.

Трансформаторы 3 и 5 на рис. 40-4 можно объединить также в один общий трансформатор с двумя первичными обмотками и одной вторичной обмоткой, присоединенной к выпрямителю 6. Катушку 4 при этом необходимо перепоет в первичную обмотку напряжения. Вместо этого можно также искусственно уве личить рассеяние этой обмотки, отделив ее от других обмоток трансформатора магнитным шунтом. При высоком напряжении трансформатор 5 целесообразно включить со стороны нейтрали обмотки якоря генератора. В генераторах малой мощности иногда отказываются от трансформатора 3 и катушку 4 присоединяй и непосредственно к зажимам генератора. Применяются также другие разновидности подобных систем возбуждения.

Вследствие насыщения и других причин как у неявнополюсных, так и явно-полюсных генераторов U == const в действительности поддерживается с точно­стью (2—5)%. Для генераторов малой мощности такая точность достаточна, но для генераторов большой мощности необходимо дополнительное регулирова­ние напряжения с помощью корректора или регулятора напряжения. Для этой цели катушку 4 можно выполнить с подмагничиванием постоянным током, и в этом случае регулятор напряжения регулирует величину этого тока, чем достигается изменение XL и тока If. в необходимом направлении. Если выпрямители 6 являются управляемыми, то регулятор напряжения может действовать на эти выпрямители.

Самовозбуждение синхронного генератора происходит только при наличии потока остаточного намагничивания, как и в генераторах , постоянного тока с параллельным возбуждением. Однако вследствие повышенного сопротивления выпрямителя при малых токах и других причин остаточный поток обычной величины индуктирует недостаточно большую э. д. с. для обеспечения самовозбуждения синхронного генератора и поэтому необходимо принимать дополнительные меры (применение резонансных контуров, включение в цепь возбуждения небольшого аккумулятора или добавочного генератора с постоянными) магнитами, увеличение остаточного потока посредством магнитных прокладок в полюсах генератора и пр.). Для получения резонансного контура параллельно зажимам выпрямителя 6 со стороны переменного тока можно подключить конденсаторы 7. Если емкости С подобрать так, что во время пуска генератора при n nН возникнет резонанс напряжений, то напряжение на конденсаторах 7 и напряжение выпрямителя 6 повысятся в несколько раз и произойдет самовозбуждение. При п=nн условия резонанса нарушатся, и поэтому конденсаторы оказывают незначительное влияние на работу схемы. В схемах возбуждения применяются полупроводниковые выпрямители. Благодаря своей простоте, надежности и хорошим регулирующим свойствам подобные схемы возбуждения получают все более широкое применение. Для защиты от перенапряжений при асинхронном ходе и других необычных условиях выпрямители обычно шунтируются высокоомным и или нелинейными сопротивлениями.

Генераторы малой мощности с рассмотренной системой возбуждения допускают прямой пуск короткозамкнутых асинхронных двигателей, мощности которых соизмеримы с мощностью генераторов. При этом пусковой ток двигателя благодаря компаундированию осуществляют форсировку возбуждения генератора и поэтому его напряжение сильно не снижается, несмотря на большие пусковые токи индуктивного характера. Применяются и другие разновидности систем возбуждения. Характерным является все более широкая замена систем с возбудителями постоянного тока системами с полупроводниковыми выпрямителям

II.Системы возбуждения СД и их основные свойства

Основные применение машин возбуждения простота схемы управления и автономность питания, которая заключается в том, что Iвозб не зависит от U-я сети. Недостаток – коллектор, который снижает надежность работы такой системы возбуждения. Статическая система возбуждения с тиристорами получили широкое распространение. Значительное их преимущество является их быстродействие, а также уменьшение шума в машинном помещение. Основным недостатком таких возбудителей является зависимость Iвозб от U питающей сети. Однако электромашинные возбудители обеспечивают большую степень устойчивостью по сравнению с тиристорными возбудителями, высокую кратность форсировки статическими возбудителями невозможно. Основным плюсом без щеточных систем возбуждения заключается в том что энергия передается без контактных колец и щеток. При использование систем возбуждения в таких системах можно обеспечить автономность его работы в зависимости от U-я питания сети, т.к. питание обмотки возбуждения синхронных возбудителей можно осуществить от измерительных трансформаторов тока и U-я. К минусам следует отнести трудность с обеспечением контроля и замера тока и U-я возбуждения, а также затруднений связанных с необходимостью размещения на валу разрядного резистора, для замыкания ОВ в период пуска.

Автоматическое регулирование возбуждения СД.

Производится для решения следующих задач:

  1. для повышения устойчивости параллельной работы,

  2. для поддержания U в узлах энергосистемах и у потребителей на требуемом уровне,

  3. для ускорения восстановления U до нормального значения после к.з. и при самозапуске нагрузки

Простейшим устройством для дискретного воздействия на систему возбуждения СМ с целью увеличения тока возбуждения до предельного значения допускаемой перегрузкой ротора является форсировка возбуждения.

Устройство форсировки возбуждения срабатывает при уменьшение U до 0,85Uном. Устройство АРВ в зависимости от параметра на которое оно реагирует и характеристика этой реакции относятся либо к регуляторам:

  1. пропорционального дейсвия

  2. сильного действия

Простейшим авт. Устройством предназначенным для быстрого увеличения возбуждения Г в аварийном режиме является релейная форсировка U (реле U kV, контактор КМ)

Принцип действия форсировки состоит в том что при значительном уменьшение U на зажимах Г менее 85%Uном реле kV замыкает свои контакты и приводит в действие контактор форсировки КМ, который срабатывая закарачивает R шунтирующего реостата RR, в результате ток возбуждении возбудителя резко растет до max значения и возбуждение Г достигает предельного значения.

Регулятор пропорционального действия реагирует на знак и отключает ток и напряжение от установившегося значения, а регулятор сильного действия реагирует не только на знак изменяющегося U и I и на скорость изменения этих параметров на производную.

Компаундирование - автоматическое регулирование тока возбуждения в зависимости от тока статора.

В нормальном режиме в случае увеличения тока статора Uгенератора уменьшается но устройство компаундирования автоматически увеличивает Iвозбуждения а следовательно и Iротора Г благодаря чему U на зажимах статора Г восстанавливается.

Устройство компаундирования работает и в аварийных режимах Г, когда U Г уменьшается, а ток статора увеличивается.

III. Система возбуждения синхронной маши­ны состоит из возбудителя и системы регули­рования тока возбуждения, замыкающегося в обмотке возбуждения синхронной машины и в обмотках возбудителя Система возбуждения должна обеспечивать надежную работу синх­ронной машины, выполняя регулирование то­ка возбуждения, форсировку возбуждения, га­шение поля возбуждения Эти процессы в крупных машинах осуществляются автоматиче­ски [20] Системы возбуждения делятся на два типа — прямые и косвенные.

В прямых системах возбуждения якорь возбудителя жестко соединен с валом синх­ронной машины В косвенных системах возбу­ждения возбудитель приводится во вращение двигателем, который питается от шин собст­венных нужд электростанции или вспомога­тельного генератора Вспомогательный гене­ратор может быть соединен с валом синхрон­ной машины или работать автономно Прямые системы более надежны, так как при аварий­ных ситуациях в энергосистеме ротор возбуди теля продолжает вращаться вместе с ротором синхронной машины и обмотка возбуждения не обесточивается

На рис 4 86, а—в приведены наиболее ра­спространенные схемы возбуждения синхрон­ных машин

На рис 4 86, а представлена наиболее распространенная прямая схема с электрома­шинными возбудителями К обмотке возбужде­ния ОВГ синхронного генератора СГ посто­янный ток через контактные кольца подается с якоря возбудителя В Обмотка возбуждения возбудителя ОВВ питается от якоря подвозбудителя ПДВ Управление током в обмотке возбуждения синхронного генератора осущест­вляется резистором, включенным в цепь обмотки возбуждения подвозбудителя ОВПДВ

Подвозбудитель и возбудитель — генера­торы постоянного тока Их якоря муфтами соединены с ротором синхронного генератора Мощность обмотки возбуждения генераторов постоянного тока составляет 0,2—5 % мощ­ности генератора Поэтому мощность управле­ния в каскадной схеме из двух генераторов постоянного тока (рис 4 86, а) составляет не­сколько процентов мощности возбуждения синхронного генератора Коэффициент усиле­ния схемы равен произведению коэффициентов усиления по мощности двух генераторов по­стоянного тока (102—103)

Предельная мощность генератора посто­янного тока с частотой вращения 3000 об/мин примерно 600 кВт Поэтому генераторы по­стоянного тока в качестве возбудителей могут Применяться в турбогенераторах мощностью 100—150 МВт Генераторы постоянного тока в качестве возбудителей находят широкое при­менение в синхронных двигателях и синхронных генераторах автономных энергетических систем

На рис 4 86, б дана схема косвенного воз­буждения с возбудителем — генератором по­стоянного тока с независимым возбуждением Якорь генератора постоянного тока вращается асинхронным АД или синхронным двигателем, которые подсоединяются к сети переменного тока, не зависящей от напряжения синхронно­го генератора

Наибольшее распространение получили схемы возбуждения со статическими преобразователями переменного тока в постоянный В 50 х годах для возбуждения гидрогенераторов применялась схема возбуждения с ртутными выпрямителями, а в последнее время широкое применение находят тиристорные схемы воз­буждения Тиристорные схемы возбуждения могут быть контактными и бесконтактными В контактных схемах через кольца ток возбуждения от тиристорного преобразователя подается на обмотку возбуждения. При этом переменный ток на тиристорный преобразова­тель подается или от электромашинного воз­будителя, или от сети.

В крупных турбогенераторах в качестве электромашинного источника электрической энергии используется индукторный высокочас­тотный генератор (рис. 487). Ротор индук­торного генератора жестко связан с ротором турбогенератора На роторе индукторного ге­нератора нет обмоток, а обмотки якоря рас­положены на статоре. Принцип действия ин­дукторного генератора рассматривается в § 423.

В бесщеточных системах возбуждения об­мотка якоря и выпрямители находятся на ро­торе. Возбудитель выполняется многофазным для турбогенератора мощностью 1000 МВт, 1500 об/мин Возбудитель имеет длину 3 м. Мощность возбудителя в кратковременном режиме 7,2 МВт и при длительной работе 2 8 МВт. Максимальный ток 9,6 кА при на­пряжении 0,75 кВ. В турбогенераторе мощно­стью 500 МВт мощность возбудителя 2,4 МВт.

Ко всем системам возбуждения предъяв­ляются жесткие требования, регламентирован­ные ГОСТ Системы возбуждения должны обе­спечивать форсировку возбуждения при сни­жении напряжения сети и аварийных режимах. Согласно ГОСТ 183-74 кратность предельного установившегося напряжения возбудителя (от­ношение максимального напряжения возбуди­теля к номинальному напряжению возбудите­ля) для крупных генераторов и синхронных компенсаторов равна 1,8—2, для других синхронных машин — 1,4—1,6.

Системы возбуждения должны быть быстродействующими. Номинальная скорость нарастания напряжения возбудителя, т. е. изме­нение напряжения от номинального до макси­мального, должна быть 1—1,5 с для крупных машин, а для остальных 0,8—1 с.

Регулирование тока возбуждения, как правило, осуществляется путем изменения на­пряжения возбудителя. Так как возбудитель не насыщен, ток возбуждения изменяется про­порционально напряжению Только в синхронных машинах небольшой мощности регулирование тока возбуждения осуществляется рео­статами.

Гашение поля при аварийных режимах обеспечивается АГП за 0,8—1,5 с. Обычно со­противление, на котором происходит гашения поля, в 5 раз превышает сопротивление контура возбуждения, а напряжение на нем в переходном процессе не превышает более чем в5 раз напряжение возбуждения.

Наряду с системами возбуждения, рассмотренными выше, применяются системы возбуждения от высших гармоник и обрати! последовательности

В воздушном зазоре электрической маши­ны существует бесконечный спектр гармоник поля, которые вращаются со скоростью, от­личающейся от основной гармоники, или вра­щаются в противоположном направлении — отношению к основной гармонике Высшие гармоники поля наводят в обмотках ротора напряжения, зависящие от скольжения и амплитуды гармоники. Если закоротить обмотки ро­тора выпрямителями, в них будет протекать пульсирующий ток высших гармоник, который создаст постоянный поток возбуждения от МДС F, (рис 4 88)

Обычно для возбуждения используется 3 я гармоника поля и выполняется специаль­ная обмотка на роторе с числом полюсов, в 3 раза большим по отношению к основной гар­монике С возбуждением от 3 и гармоники выпускается серия синхронных генераторов ЕС мощностью до 100 кВт

Представляет интерес использование для возбуждения обратного поля В однофазных двигателях при возбуждении от обратной последовательности (рис 4 88) могут быть полу­чены массогабаритные и энергетические харак­теристики, близкие к характеристикам трех­фазных асинхронных двигателей

Системы возбуждения синхронных машин весьма разнообразны и во многом определяют конструкцию синхронной машины. Некоторые видоизменения систем возбуждения будут рас­смотрены при изучении специальных синхрон­ных машин.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]