
- •Введение
- •Принципы количественной биологии Основные задачи количественной биологии
- •Этапы биометрического исследования
- •Выборка и ее статистическое описание
- •Процесс формирования выборки
- •Признак
- •Построение вариационного ряда
- •Средняя (характеристика величины признака)
- •Стандартное отклонение (и другие показатели изменчивости)
- •Статистическое оценивание Свойства нормального распределения
- •Генеральная совокупность и выборка
- •Ошибка репрезентативности выборочных параметров
- •Доверительный интервал
- •Определение точности опыта
- •Оптимальный объем выборки
- •Асимметрия и эксцесс
- •Основные типы распределения биологических признаков
- •Нормальное распределение
- •Биномиальное распределение
- •Распределение Пуассона
- •Альтернативное распределение
- •Полиномиальное распределение
- •Равномерное распределение
- •Проверка статистических гипотез
- •Задача "доказать чужеродность варианты"
- •Задача "доказать отличие двух выборок"
- •Сравнение двух выборок по величине признака
- •Сравнение средних арифметических по критерию t Стьюдента
- •Сравнение двух выборок по изменчивости признака
- •Сравнение стандартных отклонений по критерию t Стьюдента
- •Сравнение дисперсий по критерию f Фишера
- •Сравнение коэффициентов вариации по критерию t Стьюдента
- •Сравнение двух выборок в целом (непараметрические критерии)
- •Критерий u Уилкоксона – Манна – Уитни
- •Критерий т Уайта
- •Критерий q Розенбаума
- •Сравнение двух выборок по силе корреляции двух признаков
- •Сравнение двух линий регрессии
- •Сравнение двух выборок по характеру распределения
- •Критерий χ² Пирсона
- •Критерий Колмогорова – Смирнова
- •Отношения между статистиками t, t, f и χ²
- •Задача "доказать отличие нескольких выборок" ("доказать влияние фактора")
- •Сравнение нескольких выборок по величине одного признака (однофакторный дисперсионный анализ)
- •Логико-теоретические основы
- •Техника расчетов
- •Дисперсионный анализ для количественных признаков
- •Парные сравнения выборочных средних методом Шеффе
- •Сравнение нескольких выборок по изменчивости признака
- •Сравнение нескольких выборок по величине двух признаков (двухфакторный дисперсионный анализ)
- •Логико-теоретические основы
- •Техника расчетов
- •Задача "найти зависимость между двумя признаками"
- •Регрессионный анализ зависимости двух признаков
- •Логико-теоретические основы
- •Техника расчета линейной регрессии
- •Криволинейная регрессия
- •Корреляционный анализ
- •Логико-теоретические основы
- •Биологическая интерпретация коэффициента корреляции
- •Техника расчета линейного коэффициента корреляции
- •Ложная корреляция
- •Метод множественной корреляции
- •Метод частной корреляции
- •Корреляционное отношение и критерий линейности
- •Ранговый коэффициент корреляции Спирмена
- •Корреляция между качественными признаками
- •Задача "классифицировать объекты" Методы многомерного анализа
- •Основы кластерного анализа
- •Основы дискриминантного анализа
- •Основы метода главных компонент
- •Главные компоненты как факторы
- •Требование максимума дисперсии
- •Факторные нагрузки
- •Расчет корреляционных компонент
- •Требование ортогональности компонент
- •Компонентный анализ
- •Информативность и значимость компонент
- •Этапы компонентного анализа
- •Варианты представления результатов
- •Компонентный анализ в среде StatGraphics
- •Имитационное моделирование в среде Excel
- •Задача аппроксимации данных (статические модели)
- •Задача изучения процессов (динамические модели)
- •Приемы работы в Excel
- •Литература
- •Справочные таблицы
- •Квадраты и квадратные корни для чисел 1…99
- •Значения случайных чисел равномерно распределенных на интервале (0, 1)
- •Ординаты нормальной кривой (значения функции )
- •Значение критерия t для отбраковки "выскакивающих" вариант
- •Пороговые значения распределения т Стьюдента; α для двустороннего критерия
- •Значения критерия Стьюдента
- •Значения критерия χ²
- •Значения критерия u Уилкоксона – Манна – Уитни
- •Значения критерия q Розенбаума
- •Значения величины
- •Содержание
- •Ивантер Эрнест Викторович Коросов Андрей Викторович Введение в количественную биологию
Компонентный анализ в среде StatGraphics
Для проведения расчетов в среде StatGraphics нужно занести данные на электронный лист, например, скопировать через буфер обмена с листа Excel. Лучший вариант – сохранение данных в формате листа Excel ранних версий. Рассмотрим ключевые этапы работы для примера с морфологической изменчивостью гадюк.
Открыть в среде StatGraphics файл следует командой меню или кнопкой Open Data File.
Чтобы имена переменных, назначенных в Excel, автоматически становились именами столбцов, они должны даваться латиницей; в окошке запроса отметить, что имена переменных в первом ряду есть.
Результаты экспорта данных можно посмотреть в окне данных, специально распахнув окно иконки, лежащей на сером поле слева в нижнем углу.
Запустить программу компонентного анализа можно только командой меню Special\ Multivariate Methods\ Principal Components.
Выбрав мышкой имена нужных переменных, кнопкой Data: их нужно скопировать в правое окно, ОК. Для дальнейшей идентификации объектов, их метки следует поместить в окно Point Labels:.
В появившемся окне Principal Component Analysis четыре кнопки играют важную роль. Первая слева кнопка Input Dialog позволяет вернуться на предыдущий шаг и переопределить список анализируемых переменных. Кнопка Tabular Options обеспечивает доступ ко всем результатам анализа (All, OK). Окно Analysis Summary выводит значения дисперсий главных компонент, окно Table of Component Weights дает значения факторных нагрузок, в окно Table of Principal Components выведены значения главных компонент.
Кнопка Graphical Options раскрывает окна с графическими иллюстрациями (All, OK).
Все окно результатов компонентного анализа предстает в виде десяти небольших окошек; распахнуть любое из них позволяет двойной клик левой кнопкой мыши.
Полнота результатов вычислений во многом определяется установками в окне Principal Components Options, которое вызывается командой контекстного меню Analysis options… (правый клик на любом окне анализа). Минимально необходимый объем информации появляется, если в блоке Extract by … Number of Components задать число 2 (т. е. выводить результаты для двух компонент); кроме того, можно задать иное минимальное значение дисперсии главной компоненты (Eigenvalue), чем принятое по умолчанию значение 1. В результате на графиках и в таблицах будут отображаться данные по компонентам, дисперсия которых превышает заданный уровень.
Диаграмма факторных нагрузок (Plot of Component Weights) копирует таблицу Table of Component Weights и призвана наглядно представить степень коррелированности соответствующих признаков.
График Scree Plot отражает изменение дисперсий компонент и (пунктиром) минимальный уровень значимых компонент.
Наиболее интересна диаграмма Scatterplot, где представлена ординация объектов в осях компонент,
а также Biplot, где к диаграмме Scatterplot добавлена диаграмма Plot of Component Weights в форме лучей.
Каждый из этих лучей построен по двум опорным точкам: в месте пересечения осей компонент (0,0) и в точке с координатами факторных нагрузок двух первых компонент (a1j,a2j) (здесь j – номер соответствующего признака). Это возможно потому, что и компоненты, и факторные нагрузки есть безразмерные признаки. Биплот наглядно показывает направления изменчивости данных, за которые ответственны определенные признаки. По промерам гадюк видно, что первое направление изменчивости (выявленное первой главной компонентой) определяет отличие особей по массе (W) и длине тела (Lt), а второе (вторая компонента) связано в основном с отличиями по длине хвоста (Lc).
Результаты расчетов можно поместить на электронный лист (с помощью кнопки Save results, поставив галочки в нужных окошках), через буфер обмена скопировать на лист Excel, и воспользоваться его богатыми графическими возможностями.
В частности, чтобы понять принцип построения биплота, следует объединить (копированием) две точечные диаграммы, построенные раздельно по значениям главных компонент и факторных нагрузок, соединив лучами точки нагрузок с пересечением осей.
10