
- •Введение
- •Принципы количественной биологии Основные задачи количественной биологии
- •Этапы биометрического исследования
- •Выборка и ее статистическое описание
- •Процесс формирования выборки
- •Признак
- •Построение вариационного ряда
- •Средняя (характеристика величины признака)
- •Стандартное отклонение (и другие показатели изменчивости)
- •Статистическое оценивание Свойства нормального распределения
- •Генеральная совокупность и выборка
- •Ошибка репрезентативности выборочных параметров
- •Доверительный интервал
- •Определение точности опыта
- •Оптимальный объем выборки
- •Асимметрия и эксцесс
- •Основные типы распределения биологических признаков
- •Нормальное распределение
- •Биномиальное распределение
- •Распределение Пуассона
- •Альтернативное распределение
- •Полиномиальное распределение
- •Равномерное распределение
- •Проверка статистических гипотез
- •Задача "доказать чужеродность варианты"
- •Задача "доказать отличие двух выборок"
- •Сравнение двух выборок по величине признака
- •Сравнение средних арифметических по критерию t Стьюдента
- •Сравнение двух выборок по изменчивости признака
- •Сравнение стандартных отклонений по критерию t Стьюдента
- •Сравнение дисперсий по критерию f Фишера
- •Сравнение коэффициентов вариации по критерию t Стьюдента
- •Сравнение двух выборок в целом (непараметрические критерии)
- •Критерий u Уилкоксона – Манна – Уитни
- •Критерий т Уайта
- •Критерий q Розенбаума
- •Сравнение двух выборок по силе корреляции двух признаков
- •Сравнение двух линий регрессии
- •Сравнение двух выборок по характеру распределения
- •Критерий χ² Пирсона
- •Критерий Колмогорова – Смирнова
- •Отношения между статистиками t, t, f и χ²
- •Задача "доказать отличие нескольких выборок" ("доказать влияние фактора")
- •Сравнение нескольких выборок по величине одного признака (однофакторный дисперсионный анализ)
- •Логико-теоретические основы
- •Техника расчетов
- •Дисперсионный анализ для количественных признаков
- •Парные сравнения выборочных средних методом Шеффе
- •Сравнение нескольких выборок по изменчивости признака
- •Сравнение нескольких выборок по величине двух признаков (двухфакторный дисперсионный анализ)
- •Логико-теоретические основы
- •Техника расчетов
- •Задача "найти зависимость между двумя признаками"
- •Регрессионный анализ зависимости двух признаков
- •Логико-теоретические основы
- •Техника расчета линейной регрессии
- •Криволинейная регрессия
- •Корреляционный анализ
- •Логико-теоретические основы
- •Биологическая интерпретация коэффициента корреляции
- •Техника расчета линейного коэффициента корреляции
- •Ложная корреляция
- •Метод множественной корреляции
- •Метод частной корреляции
- •Корреляционное отношение и критерий линейности
- •Ранговый коэффициент корреляции Спирмена
- •Корреляция между качественными признаками
- •Задача "классифицировать объекты" Методы многомерного анализа
- •Основы кластерного анализа
- •Основы дискриминантного анализа
- •Основы метода главных компонент
- •Главные компоненты как факторы
- •Требование максимума дисперсии
- •Факторные нагрузки
- •Расчет корреляционных компонент
- •Требование ортогональности компонент
- •Компонентный анализ
- •Информативность и значимость компонент
- •Этапы компонентного анализа
- •Варианты представления результатов
- •Компонентный анализ в среде StatGraphics
- •Имитационное моделирование в среде Excel
- •Задача аппроксимации данных (статические модели)
- •Задача изучения процессов (динамические модели)
- •Приемы работы в Excel
- •Литература
- •Справочные таблицы
- •Квадраты и квадратные корни для чисел 1…99
- •Значения случайных чисел равномерно распределенных на интервале (0, 1)
- •Ординаты нормальной кривой (значения функции )
- •Значение критерия t для отбраковки "выскакивающих" вариант
- •Пороговые значения распределения т Стьюдента; α для двустороннего критерия
- •Значения критерия Стьюдента
- •Значения критерия χ²
- •Значения критерия u Уилкоксона – Манна – Уитни
- •Значения критерия q Розенбаума
- •Значения величины
- •Содержание
- •Ивантер Эрнест Викторович Коросов Андрей Викторович Введение в количественную биологию
Сравнение нескольких выборок по величине двух признаков (двухфакторный дисперсионный анализ)
Двухфакторный дисперсионный анализ исследует влияние на результативный признак двух факторов как порознь, так и совместно. Учет эффекта влияния каждого фактора по отдельности теоретически ничем не отличается от описанных выше схем. И там и тут оценивается изменчивость средних по градациям на фоне случайной изменчивости вариант внутри градаций, с помощью критерия Фишера устанавливается достоверность отличий межгрупповых дисперсий от внутригрупповых.
Важным преимуществом двухфакторного дисперсионного анализа перед однофакторным служит то, что с его помощью в рамках факториальной изменчивости удается определить варьирование по сочетанию градаций Ссочет., позволяющее получить новый и весьма ценный в биологическом отношении показатель – оценку влияния сочетанного действия (взаимодействия) факторов.
Логико-теоретические основы
Модель двухфакторного дисперсионного анализа становится сложнее и выражает отклонение варианты (xi) от общей средней (M) за счет действия двух контролируемых факторов порознь (xфактA., xфактB.) и совместно (xсочетAB.), а также за счет действия случайных причин (xслуч.):
xi = M ± xфактA. ± xфактB. ± xсочетAB. ± xслуч..
Правило разложения вариаций предстает как:
Собщ. = СA + СB + СAB + Сслуч. ,
Сфакт. = Собщ. – Сслуч. = СA + СB + СAB,
где Собщ. = Σ(xi – M)²,
СA. = Σ(MAj – M)², j – число градаций фактора А,
СB = Σ(MBk – M)², k – число градаций фактора В,
Сслуч. = Σ(xi – Mxi)²,
СAB = Собщ. – (СA + СB + Сслуч.).
Сочетанное действие (взаимодействие) факторов означает, что каждый из них помимо прямого воздействия на объект исследования сказывается и на характере влияния на объект и другого фактора, усиливает или ослабляет его. К примеру, неурожай кормов усугубляет негативное действие зимнего холода на численность популяций мелких млекопитающих.
Выделяют три основных вида взаимодействия факторов:
– аддитивное, когда взаимодействия факторов нет, их эффекты просто складываются,
– антагонизм, когда один фактор ослабляет действие другого, и наоборот,
– синергизм, когда наблюдается усиление действия обоих факторов.
Эти эффекты часто встречаются в практике токсикологических исследований. Рассмотрим гипотетические примеры действия на подопытных животных двух веществ, взятых в разных концентрациях. По осям OX и OY диаграммы отложены концентрации этих веществ в диапазоне от 0 до CL50, которые за время опыта вызывают гибель 50% особей (рис. 7.2). Первая иллюстрация показывает точки на осях, в которых концентрации вещества [A] = 0 и [B] = CL50 = ВCL50, а наблюдаемая гибель составляет 50% особей, то же наблюдается для вещества [A] = CL50 = ACL50 и [B] = 0.
Аддитивное действие – простое сложение влияний. Прямая, соединяющая точки [A] = CL50 = ACL50, [B] = CL50 = ВCL50, есть множество опытов, в которых токсиканты ведут себя по отношению друг к другу как одно и то же вещество, поскольку эффекты от их доз просто суммируются. Так, половинные по эффекту дозы ACL50/2 и BCL50/2 в сумме дают одну "полноценную" совместную CL50. Однако важно отметить, что пропорциональность эффектов разных веществ вовсе не означает пропорциональности их концентраций.
А основа аддитивизм антагонизм синергизм
В
Рис. 7.2. Виды взаимодействия веществ
Антагонизм – подавление вредного действия одного вещества другим. Любая точка на выгнутой кривой свидетельствует о том, что для достижения эффекта CL50 требуется взять дозы, которые в сумме должны бы превышать эффект CL50. Например, эффект CL50 в точке 1 достигается суммой 0.7∙ACL50 + 0.7∙BCL50. Чисто арифметически (аддитивно) эффект должен был составить 1.4∙CL50, т. е. 70% гибели тест-объектов.
Синергизм – усиление действия. Точки на вогнутой кривой соответствуют ситуации, когда для достижения эффекта CL50 можно взять дозы, суммы которых аддитивно меньше CL50. Так, эффект CL50 обнаруживается в точке для суммы 0.4∙ACL50 + 0.4∙BCL50. Аддитивный эффект должен был составить 0.8∙CL50, т. е. 40% гибели организмов, но синергизм обеспечивает гибель 50% особей.
Сочетанное действие факторов нельзя смешивать с корреляцией факторов. Взаимодействие осуществляется "внутри" объекта исследования и связано со спецификой реакции биосистемы, а корреляция реализуется "снаружи" и связана как с природой фактора, так и со способом организации наблюдений. Чтобы выявить эффект именно взаимодействия, изучаемые факторы должны быть, по возможности, независимы друг от друга.
Кроме этого, имеется ряд условий правильного применения данного метода. Так, дисперсионному комплексу необходима полнота, т. е. второй фактор (В) должен быть представлен в каждой градации первого фактора (А) одинаковым числом градаций.
Ниже рассмотрены алгоритмы, относящиеся лишь к равномерным комплексам, характеризующимся равной численностью групп (в градациях содержатся одинаковое число вариант). Что же касается неравномерных многофакторных комплексов, то их анализ принципиально возможен, но имеет свои особенности, существенно усложняющие технику вычислений.
Если исходные данные представлены по градациям неравномерно, вполне допустимо искусственное превращение их в равномерные комплексы. Для этого нужно составить выборки одинаковой величины, используя часть имеющихся данных. Следует помнить, что такой отбор должен быть не субъективным, но случайным. При организации случайного отбора вариант лучше всего прибегнуть к жеребьевке. Например, убирать из выборки те варианты, номера которых совпадают со значениями случайных чисел (табл. 3П). Отбросив часть вариант, мы лишаемся и части информации о варьировании признаков; избежать неправильных выводов, вызванных методикой формирования выборок, помогает многократный пересчет по схеме дисперсионного анализа с использованием результатов нескольких жеребьевок. Ограниченные рамки настоящего краткого руководства не позволяют остановиться на этом вопросе более подробно, поэтому мы отсылаем заинтересованного читателя к специальным пособиям, где техника дисперсионного анализа неравномерных многофакторных комплексов изложена с исчерпывающей полнотой.
Условием эффективности многофакторного анализа является также выбор схемы организации факторов в градации. Выше был рассмотрен дисперсионный анализ массива данных с повторностями в каждой градации, для которого разложение суммы квадратов соответствует выражению Собщ. = СA + СB + СAB + Сслуч. (табл. 7.6).
Таблица 7.6
Двухфакторный дисперсионный комплекс: c градаций фактора А (столбцы) и r градаций фактора В (ряды) с n повторениями
в каждой градации (l = 1, 2,…, r; j = 1, 2,…, c; i = 1, 2,…, n)
|
А1 |
… |
Аj |
Аc |
В1 |
x111 x112 … |
…
|
… |
x1c1 x1c2 … |
… |
… |
… |
… |
… |
Вl |
… |
… |
xlji |
… |
Вr |
xr11 … xr1n |
…
|
xrjn |
xrc1 … xrcn |
Однако простейшей структурой дисперсионного анализа служит таблица, поля и графы которой характеризуют градации действия двух факторов, а в каждой ячейке содержится лишь одно значение результативного признака (табл. 7.7).
Таблица 7.7
Дисперсионный комплекс для трех градаций без повторений
|
А1 |
А2 |
А3 |
В1 |
x11 |
x12 |
x13 |
В2 |
x21 |
x22 |
x23 |
В3 |
x31 |
x32 |
x33 |
Комплексы без повторений в градациях упрощают не только алгоритм обработки, но, к сожалению, и результаты. Сумма квадратов разлагается только на следующие компоненты:
Собщ. = СA + СB + Состат.,
эффект сочетанного действия становится неотличим от случайного варьирования (Состат. = СAB + Сслуч.).