Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Количественная биология.doc
Скачиваний:
7
Добавлен:
05.12.2019
Размер:
8.84 Mб
Скачать

Полиномиальное распределение

Наблюдается для качественных признаков, имеющих не два альтернативных свойства, но несколько возможных проявлений качества (k>2). Примеры полиморфизма популяций – как раз из этой области. В их числе варианты окраски покровов и волос, типы рисунков в определенных областях тела, способы жилкования листьев растений или крыльев насекомых, варианты расположения и формы щитков рептилий и другие проявления множественности фенотипов особей. Формализуя описание, укажем, что в одной пробе содержится одна варианта (m = 1), но типов вариант (морф, фенотипов) больше, чем два (k>2).

Примером полиномиального (иначе – мультиномиального) распределения может служить встречаемость 4 фенов головы живородящей ящерицы – 4 вариантов контакта лобно-носового, предлобных и лобного щитков (рис. 3.7).

Лучше всего выборка может быть представлена вариационным рядом – частотами (pj) встречаемости в популяции особей с данным (j-м) проявлением качественного признака и общим числом морф (k). Для более емкого представления ряда используется величина "среднее число фенотипов", учитывающая характер распределения частот между разными морфами: μ = Σ(pj)²,

статистическая ошибка показателя равна: .

Среднее число фенотипов (μ) равно числу фенотипов (k) только тогда, когда частоты всех фенотипов одинаковы (p1 = p2 …  = pj  = pk), и меньше во всех других случаях.

Рис. 3.7. Полиномиальное распределение (4 фена головы живородящей ящерицы). По оси ординат – частости фенов среди 64 сеголетков, отловленных под Петрозаводском

Для полиномиального распределения предлагается еще одна характеристика – "доля редких морф": h = 1– μ∙k,

статистическая ошибка показателя равна: .

Доля редких фенотипов равна нулю при равенстве частот всех морф и отличается от нуля при других вариантах распределения.

Равномерное распре­деление

Частный случай распределения альтернативного и полиномиального. Равномерное распределение характеризуется оди­наковой частотой встречаемости всех значений дискретного признака (p = q для двух классов или p1 = p2 = … = p= pk для нескольких классов). Такой тип распределения можно исполь­зовать для формулирования гипотез при анализе час­тот генов и фенов в популяциях, при подсчете тест-организмов, вы­живших в токсикометрическом эксперименте, и т. п. В частности, можно предположить, что ветви дерева могут равномерно располагаться по сторонам света (рис. 3.8).

Рис. 3.8. Предположительно равномерное распределение

числа ветвей ели по секторам азимута (º)

Помимо рассмотренных четырех типов распределения для описания эмпирических совокупностей предложено множество других моделей, основанных на других принципах и даю­щих нередко более точные оценки параметров.

Для описания природных явлений более реалистичные основания, чем биномиальное, имеет распределение гипергеометрическое, оно не предполагает возврата объектов каждой пробы обратно в изучаемую совокупность. Распределение негативное биномиальное подходит для случая, когда вероятности элементарных событий (p и q) не постоянны, в отличие от биномиального распределения. Распределения Максвелла и Рэлея имеют умеренную правостороннюю асимметрию и описывают поведение непрерывных положительных случайных величин. Распределения Парето и показательное пригодны для описания резко правосторонне асимметричных вариационных рядов с перепадом частот. Распределение логнормальное, или логарифмически нормальное, характеризуется тем, что логарифмы исходных значений выборки образуют правильное нормальное распределение; эта модель подходит для описания признаков, имеющих распределения с умеренной правосторонней асимметрией, это в первую очередь концентрации веществ в различных средах, т. е. гидрохимические, физиологические и биохимические показатели.

4