
- •Задачи коши для линейного оду 1 го порядка.
- •Линейные дифференциальные уравнения высших порядков с постоянными коэффициентами.
- •Лоду второго пордка с переменными коэффициентами-степенными функциями. Уравнения Эйлера.
- •Краевая задача для оду второго порядка.
- •Однородная краевая задача для лоду второго порядка с
- •Задача Штурма — Лиувилля
- •Свойства
- •Задача Коши для оду эйлерова типа с постоянными коэффициентами и полиномиальной правой частью. Метод неопределенных коэффициентов.
Лоду второго пордка с переменными коэффициентами-степенными функциями. Уравнения Эйлера.
6.1.1. Подстановка Эйлера (сведение к ЛОДУ с постоянными коэффициентами). ЛОДУ второго порядка, у которых коэффициенты при производных-степенные функции с показателем равным порядку производной с помощью подстановки Эйлера сводятся к ЛОДУ с постоянными коэффициентами
(1)
решение которого определяется известными методами, изложенными в предыдущих лекциях.
6.1.2.
Метод характеристических показателей
степенных фундаметальных решений
Эйлера. Полагая фундаментальные решения
соответствующих однородных ЛОДУ в виде
степенных функций с искомым показателем
(2)
Характеристическое (вековое) определяющее уравнение для чисел -алгебраическое уравнение второго порядка, корням которого
(3)
соответствуют следующие фундаментальные решения
корни действительные простые (некратные)
(4)
корни действительные кратные
(5)
корни комплксно-сопряженные
(6)
Пример 13 (РГР). Решить уравнение
Используем метод подстановки Эйлера-степенных фундаментальных решений, в соответствии с которым однородному уравнению ставится в соответствие вековое уравнение и фундаментальные решения
Правая часть специального вида, поэтому частное решение может быть определено методом неопределенных коэффициентов по схеме
6.2. Общие и частные решения для ОДУ второго порядка. Для ОДУ второго порядка определены три основные типа задач:
-определение
общего решения ОДУ на заданном промежутке
;
(7)
-определение частного решения ОДУ на заданном промежутке , удовлетворяющем начальному условию (условию Коши), когда заданы значение искомой функции и ее производной в заданной точке промежутка
(8)
-определение частного решения ОДУ на заданном промежутке , удовлетворяющем граничным условиям (краевым), когда заданы значение искомой функции или ее производной в конечных точках промежутка.
Краевая задача для оду второго порядка.
Произвольные постоянные (две) интегрирования в общем решении ОДУ определяются из дополнительных краевых (граничных) условий. Для ЛОДУ второго порядка
(9)
различают три типа линейных краевых условий:
-условия первого рода (Дирихле), когда на краях интервала заданы значения искомой функции
(10)
-условия второго рода (Неймана), когда на краях интервала заданы значения производных искомой функции
(11)
-условия третьего рода (Робина или Ньютона), когда на краях интервала заданы линеные комбинации значений искомой функции и ее производных
(12)
В результате постоянные интегрирования определяются из линейной системы двух алгебраических уравнений, дающей частное решение краевой (граничной) задачи для ОДУ второго порядка.