Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
колок.docx
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
88.05 Кб
Скачать

Вопрос 18. Биоактивные производные холестерина

Холестерин – источник образования в организме млекопитающих желчных кислот, а такжн стероидных гормонов ( половых и кортикоидных). Под действием УФ-лучей может превращаться в витамин D3. Может быть источником витаминов группы В.

Желчные кислоты. Монокарбоновые гидроксикислоты из класса стероидов, производные холановой кислоты. Синтезируются в печени. У млекопитающих содержат 24 атома С, у земноводных 27.

Функции желчных кислот:

  1. Образование мицелл

  2. Эмульгирование жиров

  3. Мобилизация липидов , что усиливает действие панкреатической липазы, способствует всасыванию липидов.

Гормоны. Стероидные гормоны – коры надпочечников ( гидрокортизон и альдостерон), эстрогены и андрогены.

Гормоны коры надпочечников – противовоспалительное действие

Эстрогены управляют беременностью

Вопрос 19. Нарушения липидного обмена

Нарушения липидного обмена могут возникнуть в результате нарушений:

  1. всасывания жира в кишечнике;

  2. перехода жира из крови в ткань;

  3. депонирования жира;

  4. межуточного жирового обмена.

Нарушение процессов всасывания жиров. Нарушения липидного обмена возможны уже в процессе переваривания и всасывания жиров. Одна группа расстройств связана с недостаточным поступлением панкреатической липазы в кишечник, вторая обусловлена нарушением поступления в кишечник желчи. Кроме того, нарушения процессов переваривания и всасывания липидов могут быть связаны с заболеваниями пищеварительного тракта (при энтеритах, гиповитаминозах и некоторых других патологических состояниях). Образовавшиеся в полости кишечника моноглицериды ижирные кислоты не могут нормально всасываться вследствие повреждения эпителиального покрова кишечника. Во всех этих случаях кал содержит много нерасщепленного жира или невсосавшихся высших жирных кислот и имеет характерный серовато-белый цвет.

Вопрос 20. Цепь переноса электронов

Основные переносчики электронов встроены во внутреннюю мембрану митохондрий и организованы в 4 комплекса, расположенных в определённой последовательности (векторно). В этой последовательности их стандартные окислительно-восстановительные потенциалы становятся более положительными по мере приближения к кислороду (табл. 6-3, рис. 6-11).

Каждое звено этой цепи специфично в отношении донора и акцептора электронов.

На первом этапе дегидрогеназы катализируют отщепление водорода от различных субстратов. Если субстратами служат а-гидрокси-кислоты малат, изоцитрат, 3-гидроксибутират, водород переносится на NAD+. Образовавшийся NADH в дыхательной цепи, в свою очередь, окисляется NADH-дегидрогеназой (комплекс I).

Если субстратом служат такие соединения, как сукцинат или глицерол-3-фосфат, акцептором водорода служат FAD-зависимые дегидрогеназы. От NADH и FADH2 электроны и протоны передаются на убихинон и далее через цепь цитохромов к молекулярному кислороду.

До сих пор точно неизвестно, каким образом расположены все переносчики электронов дыхательной цепи. Однако установлено, что в расположении дыхательных комплексов существует определённая асимметрия: некоторые из белков-переносчиков находятся ближе к той стороне внутренней мембраны, которая обращена к матриксу, а другие - к противоположной; некоторые белки пронизывают мембрану насквозь

Изучению последовательности переноса электронов способствовало исследование действия специфических ингибиторов, блокирующих определённые этапы этого процесса (рис. 6-12). Переносчики электронов, стоящие в цепи непосредственно перед блокированным этапом, становятся более восстаноктенными, а стоящие после этого этапа - более окисленными. Это можно обнаружить при помощи спектрофотометра, так как у окисленных и восстановленных форм переносчиков разные спектры поглощения.

  • Комплекс I (НАДН дегидрогеназа) окисляет НАД-Н, отбирая у него два электрона и перенося их на растворимый в липидахубихинон, который внутри мембраны диффундирует к комплексу III. Вместе с этим, комплекс I перекачивает 4 протона из матрикса в межмембранное пространство митохондрии.

  • Комплекс II (Сукцинат дегидрогеназа) не перекачивает протоны, но обеспечивает вход в цепь дополнительных электронов за счёт окисления сукцината.

  • Комплекс III (Цитохром bc1 комплекс) переносит электроны с убихинола на два водорастворимых цитохрома с, расположенных на внутренней мембране митохондрии. Убихинол передаёт 2 электрона, а цитохромы за один цикл переносят по одному электрону. При этом туда также переходят 2 протона убихинола и перекачиваются комплексом.

  • Комплекс IV (Цитохром c оксидаза) катализирует перенос 4 электронов с 4 молекул цитохрома на O2 и перекачивает при этом 4 протона в межмембранное пространство. Комплекс состоит из цитохромов a и a3, которые, помимо гема, содержат ионы меди.

Кислород, поступающий в митохондрии из крови, связывается с атомом железа в геме цитохрома a3 в форме молекулы O2. Каждый из атомов кислорода присоединяет по два электрона и два протона и превращается в молекулу воды.

Некоторые вещества блокируют перенос электронов через комплексы I, II, III, IV .

  • Ингибиторы I комплекса — барбитураты, ротенон, пиерицидин

  • Ингибитор II комплекса — малонат.

  • Ингибитор III комплекса — антимицин А, миксотиазол, стигматтелин

  • Ингибиторы IV комплекса — сероводород, цианиды, угарный газ, оксид азота.