
- •Вопрос 1. Цикл лимонной кислоты – центральный процесс энергетического обмена
- •Вопрос 2. Регулирование скорости цикла лимонной кислоты
- •Вопрос 4. Пути потребления активного ацетила
- •Вопрос 5. Назначение и пути потребления кетоновых тел
- •Вопрос 6. Образование и превращение пвк
- •Вопрос 7. Синтез жира из углеводов
- •Вопрос 8. Превращение углеводов в пищев тракте и в ходе метаболизма в организме животных
- •Вопрос 9. Биохимические механизмы поддержания постоянного уровня глюкозы в крови при голодании
- •Вопрос 10. Биологическое значение пентозного пути окисления углеводов
- •Вопрос 11. Нарушения углеводного обмена
- •Вопрос 12. Пути образования и потребления фосфатидной кислоты
- •Вопрос 13. Свободнорадикальное окисление ненасыщенных соединений и пути его предотвращения. Антиоксиданты
- •Вопрос 14. Строение и функции клеточных мембран. Их роль в метаболизме
- •Вопрос 15. Транспорт липидов в организме
- •Вопрос 16. Метаболизм липидов и холестерина
- •Вопрос 17. Строение, синтез и биологическое значение холестерола
- •Вопрос 18. Биоактивные производные холестерина
- •Вопрос 19. Нарушения липидного обмена
- •Вопрос 20. Цепь переноса электронов
- •Вопрос 21. Механизмы синтеза атф
- •Вопрос 22. Разобщение окислительного фосфорилирования
- •Вопрос 24. Биохимические механизмы образования и утилизации аммиака
- •Вопрос 25. Участие трансаминаз в метаболизме
- •Вопрос 26. Биохимическая роль нуклеотидов в метаболизме
- •Вопрос 27. Отличия и сходства строения днк и рнк
- •Вопрос 28. Отличия и сходство механизмов синтеза днк и рнк
- •Вопрос 29. Субстраты, ферменты и механизмы синтеза и репарации днк
- •Вопрос 30. Субстраты, ферменты и механизмы синтеза рнк
- •Вопрос 31. Субстраты, ферменты и механизм синтеза белка
- •Вопрос 32. Конечные продукты пуринового обмена у разных видов животных
- •Вопрос 33. Особенности азотистого обмена у разных животных
Вопрос 5. Назначение и пути потребления кетоновых тел
Из печени К. т. поступают в кровь и с нею во все остальные органы и ткани, где они включаются в универсальный энергообразующий цикл — цикл трикарбоновых кислот, в котором окисляются до углекислоты и воды. К. т. используются также для синтеза Холестерина, высших жирных кислот (Жирные кислоты), фосфолипидов (см. Липиды) и заменимых аминокислот (Аминокислоты).
При голодании, однообразном безуглеводистом питании и при недостаточной секреции инсулина использование ацетил-КоА в цикле трикарбоновых кислот подавляется, т.к. все метаболически доступные ресурсы организма превращаются в глюкозу крови. В этих условиях увеличивается синтез К. т.
При повышении содержания К. т. в крови они начинают выводиться с мочой, а также с выдыхаемым воздухом в виде ацетона. Наиболее значительное повышение концентрации К. т. в крови (гиперкетонемия) наблюдается при диабетической (кетоацидотической) коме (см. Диабет сахарный). Интенсивное образование К. т. происходит при приеме с пищей так называемых кетогенных аминокислот (лейцина, тирозина, фенилаланина, изолейцина), некоторых белков и большого количества жиров (при усиленной мобилизации жира из жировых депо). Щелочные соли также проявляют кетогенный эффект, который обусловлен вызываемым ими нарушением функционирования цикла трикарбоновых кислот. Введение с пищей углеводов тормозит образование К. т. Инсулин стимулирует синтез жирных кислот из ацетил-КоА и активирует использование последнего в цикле трикарбоновых кислот, в результате чего снижается интенсивность синтеза К. т.
Вопрос 6. Образование и превращение пвк
В условиях достаточного поступления кислорода, пировиноградная кислота превращается в ацетил-кофермент А, являющийся основным субстратом для серии реакций, известных как цикл Кребса, или дыхательный цикл, цикл трикарбоновых кислот. Пируват также может быть превращён в анаплеротической реакции в оксалоацетат. Оксалоацетат затем окисляется до углекислого газа и воды.
Если кислорода недостаточно, ПВК подвергается анаэробному расщеплению с образованием молочной кислоты у животных иэтанола[1] у растений.[2] При анаэробном дыхании в клетках пируват, полученный при гликолизе, преобразуется в лактат при помощи ферменталактатдегидрогеназы и NADP в процессе лактатной ферментации, либо в ацетальдегид и затем в этанол в процессе алкогольной ферментации.
Пировиноградная кислота является «точкой пересечения» многих метаболических путей. Пируват может быть превращён обратно в глюкозу в процессе глюконеогенеза, или в жирные кислоты или энергию через ацетил-КоА, в аминокислоту аланин, или в этанол
Вопрос 7. Синтез жира из углеводов
Если большие количества углеводов попадают в организм, они используются для получения энергии, а избыток их быстро превращается в триглицериды и хранится в таком виде в жировой ткани. У человека большая часть триглицеридов образуется в печени, но очень небольшие количества могут образовываться и в самой жировой ткани. Триглицериды, образуемые в печени, транспортируются главным образом в виде липопротеинов очень низкой плотности в жировую ткань, где и хранятся. Превращение ацетил-КоА в жирные кислоты. Первым этапом синтеза триглицеридов является превращение углеводов в ацетил-КоА.
Это происходит во время обычного расщепления глюкозы гликолитической системой. Этот синтез осуществляется двуступенчатым процессом с использованием малонил-КоА и НАДФ-Н в качестве основных посредников процесса полимеризации.
Объединение жирных кислот с а-глицерофосфатом при образовании триглицеридов. Как только синтезируемые цепочки жирных кислот начинают включать от 14 до 18 атомов углерода, они взаимодействуют с глицеролом, образуя триглицериды. Ферменты, катализирующие эту реакцию, высокоспецифичны для жирных кислот с длиной цепочки от 14 атомов углерода и выше, что является фактором, контролирующим структурное соответствие триглицеридов, хранящихся в организме.
Образование глицероловой части молекулы триглицерида обеспечивается а-глицерофосфатом, который является побочным продуктом реакции гликолитического расщепления глюкозы.
Эффективность превращения углеводов в жиры. Во время синтеза триглицеридов только 15% потенциально содержащейся в глюкозе энергии теряется в виде тепла. Остальные 85% преобразуются в энергию запасаемых триглицеридов.