
- •Вопрос 1. Цикл лимонной кислоты – центральный процесс энергетического обмена
- •Вопрос 2. Регулирование скорости цикла лимонной кислоты
- •Вопрос 4. Пути потребления активного ацетила
- •Вопрос 5. Назначение и пути потребления кетоновых тел
- •Вопрос 6. Образование и превращение пвк
- •Вопрос 7. Синтез жира из углеводов
- •Вопрос 8. Превращение углеводов в пищев тракте и в ходе метаболизма в организме животных
- •Вопрос 9. Биохимические механизмы поддержания постоянного уровня глюкозы в крови при голодании
- •Вопрос 10. Биологическое значение пентозного пути окисления углеводов
- •Вопрос 11. Нарушения углеводного обмена
- •Вопрос 12. Пути образования и потребления фосфатидной кислоты
- •Вопрос 13. Свободнорадикальное окисление ненасыщенных соединений и пути его предотвращения. Антиоксиданты
- •Вопрос 14. Строение и функции клеточных мембран. Их роль в метаболизме
- •Вопрос 15. Транспорт липидов в организме
- •Вопрос 16. Метаболизм липидов и холестерина
- •Вопрос 17. Строение, синтез и биологическое значение холестерола
- •Вопрос 18. Биоактивные производные холестерина
- •Вопрос 19. Нарушения липидного обмена
- •Вопрос 20. Цепь переноса электронов
- •Вопрос 21. Механизмы синтеза атф
- •Вопрос 22. Разобщение окислительного фосфорилирования
- •Вопрос 24. Биохимические механизмы образования и утилизации аммиака
- •Вопрос 25. Участие трансаминаз в метаболизме
- •Вопрос 26. Биохимическая роль нуклеотидов в метаболизме
- •Вопрос 27. Отличия и сходства строения днк и рнк
- •Вопрос 28. Отличия и сходство механизмов синтеза днк и рнк
- •Вопрос 29. Субстраты, ферменты и механизмы синтеза и репарации днк
- •Вопрос 30. Субстраты, ферменты и механизмы синтеза рнк
- •Вопрос 31. Субстраты, ферменты и механизм синтеза белка
- •Вопрос 32. Конечные продукты пуринового обмена у разных видов животных
- •Вопрос 33. Особенности азотистого обмена у разных животных
Вопрос 27. Отличия и сходства строения днк и рнк
Молекулярную структуру ДНК впервые установили Джеймс УОТСОН и Френсис КРИК в 1953 г. Она состоит из ДВОЙНОЙ СПИРАЛИ, сложенной двумя длинными лентами чередующихся молекул сахара (дезоксирибозы) и фосфатных групп, связанных азотистыми основаниями. В целом молекула имеет форму, напоминающую скрученную веревочную лестницу, перекладинами которой служат азотистые основания - АДЕНИН (А), ЦИТОЗИН (С), ГУАНИН (G) и тимин (Т). Основания соединяются попарно всегда в одном и том же порядке: аденин с тимином, гуанин с цитозином.
Молекула имеет однонитевое строение. Полимер. В результате взаимодействия нуклеотидов друг с другом молекула РНК приобретает вторичную структуру, различной формы (спираль, глобула и т.д.). Мономером РНК является нуклеотид (молекула, в состав которой входит азотистое основание, остаток фосфорной кислоты и сахар (пептоза)).Нуклеотиды, входящие в состав РНК: гуанин, аденин, цитозин, урацил.
Между ДНК и РНК есть три основных отличия:
ДНК содержит сахар дезоксирибозу, РНК — рибозу, у которой есть дополнительная, по сравнению с дезоксирибозой,гидроксильная группа. Эта группа увеличивает вероятность гидролиза молекулы, то есть уменьшает стабильность молекулы РНК.
Нуклеотид, комплементарный аденину, в РНК не тимин, как в ДНК, а урацил — неметилированная форма тимина.
ДНК существует в форме двойной спирали, состоящей из двух отдельных молекул. Молекулы РНК, в среднем, гораздо короче и преимущественно одноцепочечные.
Вопрос 28. Отличия и сходство механизмов синтеза днк и рнк
В живой клетке синтез РНК на матрице ДНК (см. ТРАНСКРИПЦИЯ) осуществляется с помощью фермента РНК-полимеразы. В клетках эукариот обнаружены 3 разные РНК-полимеразы, синтезирующие разные классы РНК. Синтезированная РНК комплементарна матрице ДНК, поскольку порядок включения нуклеотидов в цепь РНК определяется последовательностью нуклеотидов в матрице ДНК, по принципу специфического спаривания оснований. В пределах определ. гена только одна из 2 комплементарных цепей ДНК служит матрицей для синтеза РНК. Молекулы РНК синтезируются обычно в виде предшественников, имеющих большую мол. м., чем функционально активные молекулы.
Репликацию ДНК осуществляет фермент ДНК-полимераза.. Процесс репликации происходит с большой точностью, но не абсолютной. Бактериальная ДНК-полимераза делает ошибки, то есть вставляет не тот нуклеотид, который был в матричной молекуле ДНК, примерно с частотой 10-6. У эукариот ферменты работают точнее, так как они более сложно устроены, уровень ошибок при репликации ДНК у человека оценивается как 10-7 – 10 -8 . Точность репликации может быть разной на разных участках геном, есть участки с повышенной частотой мутаций и есть участки более консервативные, где мутации происходят редко
Вопрос 29. Субстраты, ферменты и механизмы синтеза и репарации днк
в репликации ДНК принимают участие более 40 ферментов и белковых факторов, объединенных в ДНК-репликазную систему( реплисому). В стадии инициации (I стадия) репликации ДНК принимает участие специф. клеточная ДНК-полимераза (проймаза), катализирующая синтез короткого олигорибонуклеотида (праймера), с которого потом начинается синтез ДНК.
II стадия – элонгация синтеза ДНК . включает в себя два принципиально отличающихся механизма синтезе двух цепей ДНК. Синтез лидирующей цепи начинается с синтеза праймера, затем неу присоединяются дезоксирибонуклеотиды под действием ДНК-полимеразы-3, далее синтез протекает непрерывно следую шагу репликационной вилки. Синтез отстающей идет фрагментарно. Синтез каждого фрагмента идет отдельно и начинается с образования праймера, который может переноситься одним из белковых факторов в точку старта биосинтеза следующего фрагмента противоположно направлению синтеза ферментов. Завершается отделением праймеров, объединением фрагментов при помощи лигаз и формированием дочерней цепи ДНК.
III стадия – терминация синтеза. Наступает при исчерпании ДНК матрицы, трансферазные реакции прекращаются.
Существует ещё синтез на матрице РНК . происходит под действием фермента обратной транскриптазы, обнаруженного у онковирусов.
Репарация в генетике, особая функция клеток, заключающаяся в способности исправлять химические повреждения и разрывы в молекулах дезоксирибонуклеиновой кислоты (См. Дезоксирибонуклеиновая кислота) (ДНК), возникающие вследствие воздействия различных физических и химических агентов, а также при нормальном биосинтезе ДНК в процессе жизнедеятельности клеток.