Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
лекции_Интегр_устр_рэ.doc
Скачиваний:
1
Добавлен:
01.03.2025
Размер:
595.97 Кб
Скачать

2.5 Ограничения, накладываемые тонкопленочной технологией

При разработке топологии и проектировании ГИС необходимо учитывать ряд ограничений, связанных с возможностями применяемых технологических процессов и оборудования. Типичные требования к топологии элементов выглядят следующим образом:

1. Пассивные элементы, к точности которых предъявляются жесткие требования, должны располагаться не менее 1000 мкм от краев подложки. Это вызвано искажениями геометрии фотошаблона на краях.

2. Для совмещения элементов, расположенных в разных слоях, необходимо предусмотреть перекрытие не менее 200 мкм при масочном методе и 10 мкм – при фотолитографии.

3. Минимально допустимое расстояние между пленочными элементами – 200 мкм.

4. Минимально допустимая ширина пленочного резистора – 200 мкм при масочном методе, 100 мкм – при фотолитографии, 50 мкм – при танталовой технологии.

5. Минимально допустимая ширина пленочных проводников – 100 мкм при масочном методе и 100 мкм – при фотолитографии.

6. Пленочные резисторы с предельно допустимой мощностью рассеяния должны располагаться не ближе 1000 мкм от краев подложки. Это связано с возникновением микродефектов поверхности подложки при скрайбировании, что ведет к увеличению количества дефектов резистивной пленки.

2.6 Реализация и основные параметры пленочных резисторов

Основные требования и характеристики пленок материалов, применяемых для изготовления резисторов

Пленки резистивных материалы характеризуются параметрами:

1. Удельное поверхностное сопротивление;

2. Толщина;

3. Максимально допустимая рассеиваемая мощность.

Удельное поверхностное сопротивление зависит от удельного объемного сопротивления и толщины пленки. Если принять, что сопротивление квадрата резистивной пленки с удельным объемным сопротивлением  равно a, толщина – d, то сопротивление

( 2.1)

Таким образом, при фиксированной толщине пленок различные сопротивления можно получить, изменяя отношение длины резистора к ширине, или, другими словами, количество квадратов, уложенных на некоторой длине.

Толщина пленки влияет на сопротивление, стабильность сопротивления, воспроизводимость сопротивления резистора. При толщинах менее 10 нм свойства пленки сильно зависят от характера микронеровностей поверхности подложки, которые приводят к нарушению однородности структуры. Пленки такой толщины весьма нестабильны. Проводимость обусловлена туннельным эффектом и термоэлектронной эмиссией между отдельными кристаллитами. Объемные свойства пленок проявляются при толщинах порядка нескольких десятков нм. Современные тонкопленочные технологии позволяют создавать пленки со стабильными характеристиками и высокой воспроизводимостью параметров при толщинах порядка 100 нм и более.

Максимально допустимая рассеиваемая мощность резистора ограничена его максимально допустимой температурой. Температура перегрева резистора определяется теплопроводностью подложки, площадью резистора, отношением площади подложки к площади резистора, выбранным способом охлаждения. Если резистор площадью S рассеивает мощность P, то тепловая нагрузка на пленку характеризуется удельной рассеваемой мощностью Pуд:

В практических расчетах определяют максимально допустимую удельную рассеваемую мощность, которая характерна для заданного материала пленки и заданного материала подложки. Особенности, связанные с размещением резистора на подложке, количенством резисторов, и т.п. учитывают с помощью коэффициенат запаса Кз, обычно лежащим в пределах от 1.2 до 2.

Пленки, применяемые для изготовления резисторов, должны удовлетворять следующим основным требованиям:

1. Высокая стабильность параметров с течением времени;

2. Высокая температурная стабильность;

3. Возможность химического травления;

4. Высокая адгезия с подложкой;

5. Возможность обеспечения широкого диапазона сопротивлений;

6. По возможности высокая рассеиваемая мощность;

7. По возможности низкая чувствительность электрического сопротивления к микродефектам поверхности.

Материалы, используемые для изготовления резисторов, можно разделить на группы:

- Чистые металлы;

- Сплавы;

- Керметы;

- Соединения.

Надо сказать, что конкретные значения параметров пленок сильно зависят от технологии и режимов их нанесения, поэтому имеет смысл указывать либо типичные значения при заданной технологии, либо указывать диапазон значений.

Хром имеет наиболее широкое применение среди чистых металлов. Обладает отличной адгезией с подложкой. Пленки хрома достаточно стабильны. Удельное поверхностное сопротивление хромовых пленок составляет 10 – 50 Ом/кв., ТКС (1 – 5)*10-4 1/0С. Пленка наносится методом термического испарения. Материал контактных площадок – золото.Удельное сопротивление хромовых пленок недостаточно высоко, что не позволяет перекрывать широкий диапазон сопротивлений резисторов.

Тантал. Благодаря своей тугоплавкости обеспечивает очень высокую стабильность пленок, коррозионную стойкость. Удельное поверхностное сопротивление пленок составляет 10 – 100 Ом/кв. Значение ТКС порядка -2*10-4 1/0С. Пленка наносится методом катодного напыления. Материал контактных площадок – тантал, либо алюминий с подслоем нихрома.

Нихром. Имеет высокую адгезию с подложкой, характерную для хрома, но при этом благодаря добавлению никеля обеспечивает более высокое поверхностное сопротивление. Наибольшее распространение получил сплав, содержащий 20% хрома и 80% никеля. Удельное поверхностное сопротивление пленок составляет 300 Ом/кв. Значение ТКС порядка ±1*10-4 1/0С. Пленка наносится методом термического испарения, при этом температура подложки должна быть в пределах 300 – 350 0С, что обеспечивает получение наиболее высококачественного резистора. Материал контактных площадок – медь. Путем добавления к нихрому ряда металлов (железо, алюминий) удельное поверхностное сопротивление может варьироваться в пределах от 150 до 500 Ом/кв.

Металлосилицидные сплавы содержат железо, хром, кремний, вольфрам. Наибольшее распространение получил сплав МЛТ-3М. Благодаря наличию большого числа компонентов свойства пленок сильно зависят от особенностей технологического процесса. Удельное поверхностное сопротивление пленок составляет 50 – 500 Ом/кв.,ТКС ±2*10-4 1/0С. Пленка наносится методом термического испарения. Материал контактных площадок – медь с подслоем нихрома или ванадия. Используются также пленки на основе дисилицида титана, дисилицида хрома, дисилицида железа.

Керметы представляют собой порошковую композицию металла и диэлектрика. Диэлектрик, обволакивая частицы металла, увеличивает сопротивление. В качестве металлов используются серебро, хром, и др. В качестве диэлектриков используются двуокись кремния, моноокись кремния, пятиокись тантала. Особенность керметов – слабая зависимость сопротивления от температуры. Это обусловлено тем, что с ростом температуры сопротивление металла увеличивается, а диэлектрика – уменьшается. Керметы обладают высокой температурой плавления, высокой стабильностью характеристик. Наиболее широкое распространение получили сплавы типа РС. В зависимости от процентного содержания диэлектрика удельное поверхностное сопротивление пленок составляет от 50 до 1000 Ом/кв. ТКС лежит в пределах от -1.5*10-4 до 1*10-4 1/0С. Пленка наносится методом термического испарения. Материал контактных площадок – золото с подслоем хрома.

Основные требования к параметрам и расчет пленочных резисторов на низких частотах.

Основные параметры низкочастотных резисторов:

1. Номинальное электрическое сопротивление (R, Ом);

2. Допустимое отклонение сопротивления от номинального значения (R, %);

3. Номинальная рассеиваемая мощность (P, Вт).

Проектирование резистора можно условно разделить на этапы:

1. Выбор материала резистивной пленки и технологии нанесения. На этом этапе задаются параметры пленок и технологические ограничения: s, Pуд, минимально допустимая ширина резистора, минимально допустимый зазор между элементами, технологическая точность обеспечения ширины резистора.

2. Выбор геометрии резистора (прямоугольник, меандр, меандр со скругленными краями, и т.д.)

3. Расчет геометрических размеров, обеспечивающих выполнение требований к основным параметрам.

Обычно разработчик имеет дело с отработанной технологией нанесения строго определенных пленок, при этом "выбор" следует понимать как "принятие к сведению".

Анализ факторов, влияющих на отклонение сопротивления

Основные влияющие факторы:

1. Температура. Учет влияния температуры производится по известному ТКС пленки и заданному из условий эксплуатации интервалу рабочих температур:

( 2.1)

где T – относительная погрешность сопротивления, вызванная влиянием температуры, R – ТКС (1/0С), T – максимальный перепад температуры при эксплуатации.

2. Старение материала резистора. В процессе эксплуатации свойства материала пленки необратимо изменяются, что приводит к изменению сопротивления:

( 2.2)

где СТ – относительная погрешность сопротивления, вызванная старением, КСТ – коэффициент старения (обычно составляет порядка 10-6 1/ч), tэ – максимальное время эксплуатации. Время эксплуатации определяется из технического задания на разрабатываемое изделие. Обычно время эксплуатации больше 10000 час.

3. Случайное изменение контактного сопротивления между резистивной пленкой и металлической контактной площадкой. Обычно погрешность контактного сопротивления – К составляет 0.01 – 0.03.

4. Случайное отклонение геометрических размеров пленки: толщины, длины, ширины. Отклонение геометрических размеров является основной составной частью погрешности сопротивления.

Изменение толщины пленки приводит к изменению поперечного сечения и удельного объемного сопротивления пленки, что выражается как изменение удельного поверхностного сопротивления пленки. Это изменение учитывается как погрешность удельного поверхностного сопротивления .

Отклонение ширины и длины резистора вызвано неточностью воспроизведения топологии при заданной технологии создания пленок. Так, в методе съемной маски отклонение составляет =20 – 30 мкм, при фотолитографии – =1 – 7 мкм. Соответствующая относительная погрешность определяется как:

( 2.3)

где b – характерная ширина, l – характерная длина резистора. В случае резистора прямоугольной формы b и l – это его ширина и длина. В случае необходимости повышения точности воспроизведения номинала необходимо снижать влияние отклонения геометрических размеров, увеличивая размеры резистора.

Результирующая погрешность пленочного резистора рассчитывается исходя из наихудшего сочетания перечисленных факторов как алгебраичесткая сумма соответствующих погрешностей:

( 2.4)

Исходные данные для расчета резистора: номинальное сопротивление R, номинальная рассеиваемая мощность P, коэффициент запаса по мощности Кз, допуск на номинальное сопротивление R; удельное поверхностное сопротивление пленки s, максимально допустимая удельная рассеиваемая мощность Pуд, ТКС пленки; погрешность удельного поверхностного сопротивления, отклонение длины и ширины; ограничения на минимальную длину и минимальную ширину, ограничение на максимальную длину при заданной ширине резистора.

Расчет выполняется исходя из следующих соотношений.

Рассчитывается коэффициент формы – число квадратов, содержащихся в резистивном элементе:

(2.5)

Для прямоугольного резистора коэффициент формы – это отношение длины резистора к его ширине:

Нетрудно видеть, что заданное сопротивление может быть получено из квадратов с произвольной длиной стороны. Минимально допустимые размеры определяются из требований по рассеиваемой мощности и допуска на сопротивление.

Связь коэффициента формы с площадью резистора:

(2.6)

Ограничение на минимально допустимую площадь резистора определяется из требования по обеспечению номинальной рассеиваемой мощности:

(2.7)

где Кз – коэффициент запаса по мощности, S – площадь резистора.

Если резистор имеет длину более одного квадрата (Кф>1), то ограничение на минимальные размеры будет определяться ограничением на минимально допустимую ширину, если Кф<1 – длину. Таким образом, из (2.6) и (2.7) находятся соответствующие ограничения на длину или ширину.

Рассмотрим ограничения, связанные с точностью воспроизведения топологии. Из формул (2.3) и (2.5) можно вывести:

откуда получается:

(2.8)

Значение F вычисляется из (2.4) исходя из заданного допуска на сопротивление.

Выбор геометрии резистора происходит исходя из конструктивных соображений. При необходимости компактно разместить резистор большой длины (большого сопротивления) применяется конструкция типа "меандр". При расчете размеров используются данные из справочной литературы по значению коэффициента формы прямоугольного изгиба пленочного проводника. Из (2.6), (2.7), (2.8) рассчитываются ограничения на общую длину и ширину резистивной пленки.

Рассчитанные размеры округляются в большую сторону с точностью до шага выбранной координатной сетки.

После расчетов следует проверить выполнение требований: по допуску на сопротивление согласно (2.4), по минимально допустимой площади резистора согласно (2.7) и при необходимости скорректировать расчет.

Следует также учитывать, что у резисторов с небольшим коэффициентом запаса по мощности обычно существует ограничение на максимальное значение коэффициента формы. Это связано с общим увеличением количества микродефектов пленки при увеличении ее длины, что приводит к снижению надежности резистора. Типичное ограничение – Кф2 при Кз→1. Если требуется резистор большой мощности большой длины, то он получается путем последовательного соединения более коротких резисторов через металлические контактные площадки.

Основные требования к параметрам и расчет резисторов на высоких частотах

Применение резисторов на высоких частотах осложняется возрастающим влиянием паразитных параметров, что требует построения адекватных моделей. На сверхвысоких частотах размеры элементов становятся сравнимы с длиной электромагнитной волны, что приводит к необходимости строить модель резистора с распределенными параметрами, либо налагать жесткие ограничения на максимальные размеры резисторов.

Эквивалентная схема резистора с учетом паразитных параметров имеет вид П-образной цепи, включающей в себя последовательно включенные сопротивление и паразитную индуктивность, паарллельно включенные паразитные емкости на землю.

Структура электрического поля между резистивной пленкой и обратной стороной подложки с уменьшением частоты приближается к однородному – характерному для плоского конденсатора. Поэтому емкость резистора с высокой достоверностью может быть определена по формуле емкости плоского конденсатора.

Плотность тока в пленке на сравнительно низких частотах практически равномерна, по заземленной стороне подложки текут токи растекания, плотность которых приблизительно равномерна и в некотором приближении не зависит от топологии схемы. То есть, заземленная обратная сторона подложки практически не влияет на индуктивность резистора. Исходя из таких допущений, индуктивность резистора может быть рассчитана по формуле индуктивности плоского проводника заданной ширины.

Представленная модель не учитывает изменение плотности тока по ширине пленки с ростом частоты, эффект электромагнитного взаимодействия пленки резистора с заземленной обратной стороной подложки, волновые эффекты, проявляющиеся при размерах элементов, сравнимых с длиной электромагнитной волны, эффект вытеснения тока из объема пленки (скин-эффект). Таким образом, представленная модель может применяться для анализа частотных свойств резистора до частот в несколько десятков, нескольких сотен мегагерц. В любом случае, максимальный размер резистора должен быть меньше длины электромагнитной волны в 15 – 20 раз.

Если отмеченные выше эффекты оказывают значительное влияние, то их корректный учет возможен при применении модели резистора в виде микрополосковой СВЧ линии передачи с потерями. По формулам из справочников по расчету СВЧ линий передачи рассчитывается волновое сопротивление, затухание, постоянная распространения.