
- •План курса
- •1 Основные положения, принципы и направления микроэлектроники
- •2 Гибридные интегральные схемы
- •3 Полупроводниковые (монолитные) интегральные схемы
- •1.1 Этапы миниатюризации элементов электронной аппаратуры
- •1.3 Классификация и общая характеристика изделий микроэлектроники
- •2 Гибридные интегральные схемы
- •2.1 Конструктивные особенности тонкопленочных и толстопленочных гис
- •2.2 Методы получения толстых пленок
- •2.3 Методы получения тонких пленок
- •2.4 Методы получения конфигураций тонкопленочных структур
- •2.5 Ограничения, накладываемые тонкопленочной технологией
- •2.6 Реализация и основные параметры пленочных резисторов
- •2.7 Реализация и основные параметры пленочных конденсаторов
- •2.8 Реализация и основные параметры индуктивностей
- •2.9 Монтаж навесных компонентов гис
- •2.10. Основные принципы разработки и этапы проектирования гис.
- •3 Полупроводниковые интегральные схемы
- •Основные принципы построения радиационно стойких имс
2 Гибридные интегральные схемы
2.1 Конструктивные особенности тонкопленочных и толстопленочных гис
С момента рождения микроэлектроники гибридные ИМС получили широкое применение. Однако, к настоящему времени роль ГИС несколько снижается, что обусловлено рядом обстоятельств. Основным преимуществом ГИС является более простая и дешевая, по сравнению с полупровродниковой, технология изготовления, больший процент выхода годных изделий. Именно эти обстоятельства вызвали большой интерес к гибридной технологии в области низких, высоких и сверхвысоких частот. Развитию технологии ГИС было посвящено множество исследований, в результате чего параметры микросхем и РЭА на их основе достигли своих оптимальных соотношений, а технологические процессы изготовления ГИС доведены до совершенства. Основным недостатком ГИС по сравнению с полупроводниковыми ИМС является относительно низкая плотность упаковки, низкая степень интеграции. Эти факторы стимулировали развитие полупроводниковой технологии, и в настоящее время современная РЭА на основе полупроводниковых ИМС имеет параметры (массогабаритные, потребляемая мощность, быстродействие, стоимость), недостижимые для ГИС. На основе пленочной технологии, составной части технологии ГИС, изготавливаются интегральные элементы функциональной электроники, интегральные датчики физических величин, небольшие партии специализированных микросхем, для которых полупроводниковая технология экономически не оправдана.
Основными конструктивными элементами ГИС являются:
диэлектрическая подложка;
пленочные пассивные элементы;
навесные бескорпусные полупроводниковые приборы;
навесные миниатюрные пассивные элементы (конденсаторы больших номинальных емкостей, катушки индуктивности, трансформаторы, и т.п.);
корпус.
Подложка ГИС выполняет следующие функции:
представляет собой конструктивную основу, на которой формируются и монтируются элементы ГИС;
обеспечивает электрическую изоляцию элементов;
служит теплоотводом.
К материалу подложки независимо от конструкции и назначения ГИС предъявляются следующие требования:
Высокое качество рабочей поверхности. Это необходимо для обеспечения четкости и прочности рисунка схемы, воспроизводимости электрических параметров элементов.
Высокая механическая прочность при небольшой толщине. В ходе технологического процесса подложка подвергается многократному воздействию высокотемпературных операций, которые могут способствовать ее растрескиванию и разрушению.
Минимальная пористость. Пористость подложки влияет на структуру и свойства пленок. Кроме того, в процессе нагрева из подложки выделяются адсорбированные газы, которые ухудшают качество наносимых пленок. Высокая плотность подложки позволяет исключить интенсивное газовыделение.
Высокая теплопроводность. Это необходимо для обеспечения эффективного теплоотвода при работе микросхемы.
Химическая стойкость. В состав подложки не должны входить вещества, которые могут вступать в химические реакции с наносимыми пленками и реагентами, применяемыми в технологическом процессе.
Высокое удельное сопротивление. Это необходимо для электрической изоляции элементов схемы.
Близость коэффициентов термического расширения подложки и наносимых на нее пленок. Это необходимо для исключения возможности появления механических напряжений в пленках, которые ведут к изменению электрических свойств пленочных элементов.
По возможности низкая стоимость исходного материала и технологии его обработки. Это требование находится в жестком противоречии с требованиями 1 – 7.
Для изготовления подложек ГИС применяются следующие материалы: стекла электровакуумные, глазурь, керамические вакуум-плотные материалы 22ХС, поликор, сапфирит, сапфир, кварц, ситаллы.
Стекло имеет очень гладкую поверхность и обладает хорошей адгезией со всеми материалами, применяемыми для изготовления ГИС. К недостаткам подложек из стекла относятся плохая теплопроводность и невысокая механическая прочность.
Ситалл является стеклокерамическим материалом, получаемым термообработкой стекла. По сравнению со стеклом ситалл имеет в несколько раз большую механическую прочность, более высокую температуру начала деформации. Ситалл имеет высокую сопротивляемость истиранию, обладает высокой химической стойкостью к кислотам, имеет малую пористость, малую газоотдачу при высоких температурах. Благодаря своим совойствам он широко применяется для изготовления подложек ГИС.
Сапфир представляет собой монокристаллическую окись алюминия. Он обладает высокой теплопроводностью, высокой механической прочностью, химической стойкостью, устойчивостью к воздействию высокой температуры, влаги. Кроме того, он обладает очень малыми диэлектрическими потерями в СВЧ диапазоне. Стоимость сапфировых подложек крайне высока, что ограничивает область их практического применения.
Поликор – керамика на основе поликристаллической окиси алюминия (корунда) с предельно высокой плотностью. Обладает малыми диэлектрическими потерями, высокой химической стойкостью, высокой теплопроводностью, малой пористостью, стойкостью к воздействию высоких температур. Шероховатость поверхности поликоровой подложки составляет порядка 2 мкм, поэтому перед нанесением тонких пленок поверхность покрывается тонким слоем глазури. Поликор – превосходный материал для изготовления подложек ГИС СВЧ диапазона. Более широкое применение сдерживается его высокой стоимостью
Керамика 22ХС – получается путем спекания порошка на основе монокристаллической окиси алюминия. Обладает малыми диэлектрическими потерями, высокой химической стойкостью, высокой теплопроводностью, малой пористостью, стойкостью к воздействию высоких температур. Применяется для изготовления толстопленочных ГИС, а также для изготовления ответственных деталей корпусов ВЧ и СВЧ полупроводниковых приборов и микросхем.