Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
лекция3_мгупи_obr.docx
Скачиваний:
1
Добавлен:
01.03.2025
Размер:
284.82 Кб
Скачать

Представление результатов измерений

Ввиду того, что каждый аргумент может иметь соответствующие доверительные границы неисключенной систематической и случайной погрешностей, то задача определения погрешности косвенного измерения в этих случаях делится на три этапа:

а) суммирование частных неисключенных систематических погрешностей аргументов;

б) суммирование частных случайных погрешностей аргументов;

в) сложение систематической и случайной составляющих погрешности.

Доверительная граница неисключенной систематической погрешности косвенного измерения при условии одинаковой доверительной вероятности частных погрешностей и их равномерного распределения внутри заданных границ определяется по формуле (без учета знака):

где θ y – доверительная граница неисключенной систематическо погрешности среднего значения X j -го аргумента. При отсутствии корреляционной связи между аргументами оценка СКО случайной погрешности косвенного измерения вычисляется по

формуле:

где Sx j – оценка СКО случайной погрешности результата измерения X j -го аргумента.

При нормальном распределении погрешностей косвенного измерения доверительная граница случайной составляющей погрешности вычисляется по формуле:

где t p – квантиль Стьюдента при доверительной вероятности P с эффективным числом степеней свободы kэф, определяемом при малых объемах выборки по формуле:

При больших объемах число степеней свободы находится по формуле

Доверительная граница суммарной погрешности результата косвенного

измерения определяется по правилам, изложенным выше.

Обработка результатов косвенных измерений при нелинейной

зависимости

Существуют два метода определения точечной оценки результата косвенного измерения и её погрешности: линеаризации и приведения.

Метод линеаризации

Для косвенных измерений при нелинейных зависимостях и некоррелированных погрешностях измерений аргументов используется метод линеаризации. Метод линеаризации основан на том, что погрешность измерения значительно меньше измеряемой величины, и поэтому вблизи средних значений Xi аргументов нелинейная функциональная зависимость линеаризуется и раскладывается в ряд Тейлора (члены высокого порядка не учитываются). Линеаризуя функцию нескольких случайных аргументов (какими и являются результаты измерений и их погрешности), можно получить, как правило, достаточно простое выражение для вычисления оценок среднего

значения и среднего квадратического отклонения функции. Разложение нелинейной функции в ряд Тейлора имеет вид:

Метод линеаризации допустим, если можно пренебречь остаточным членом R . Остаточным членом

пренебрегают, если

где X S – среднее квадратическое отклонение случайных погрешностей результата измерения xi -го аргумента. Первое слагаемое правой части уравнения есть точечная оценка истинного значения косвенной величины, которая получается подстановкой в

функциональную зависимость средних арифметических Xi , значений аргументов:

Второе слагаемое

есть сумма составляющих погрешности косвенного измерения, называемых частными погрешностями, а частные производные

- коэффициентами влияния.

Отклонения ΔXi должны быть взяты из полученных значений погрешностей и такими, чтобы они максимизировали выражение для остаточного члена R . Если частные погрешности косвенного измерения не зависят друг от друга, т. е. являются некоррелированными, и известны доверительные границы погрешности аргументов при одинаковой вероятности, то предельная погрешность (без учета знака) косвенного измерения вычисляется по формуле:

значения частных производных функциональной зависимости определяются при средних значениях аргументов

Этот метод, называемый максимум-минимум, дает значительно завышенное значение погрешности косвенного измерения. Относительно правильная оценка погрешности косвенного измерения, получается, по методу квадратического суммирования

В ряде случаев расчет погрешности косвенного измерения значительно упрощается при переходе к относительным погрешностям. Для этого используется прием логарифмирования и последующего дифференцирования функциональной зависимости. Когда предельная погрешность косвенного измерения, полученная по методу максимума-минимума:

а по методу квадратического суммирования:

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]