Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
matam__1.doc
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
1.1 Mб
Скачать

1Вопрос

Предел функции по Гейне

Значение   называется пределом (предельным значением) функции   в точке  , если для любой последовательности точек  , сходящейся к  , но не содержащей   в качестве одного из своих элементов (то есть в проколотой окрестности   ), последовательность значений функции   сходится к  .[1]

Предел функции по Коши

Значение   называется пределом (предельным значением) функции   в точке  , если для любого наперёд взятого положительного числа   найдётся отвечающее ему положительное число   такое, что для всех аргументов  , удовлетворяющих условию  , выполняется неравенство  .[1]

Свойства пределов функции

1) Предел постоянной величины

Предел постоянной величины равен самой постоянной величине:

2) Предел суммы

Предел суммы двух функций равен сумме пределов этих функций:

Аналогично предел разности двух функций равен разности пределов этих функций.

Расширенное свойство предела суммы:

Предел суммы нескольких функций равен сумме пределов этих функций:

Аналогично предел разности нескольких функций равен разности пределов этих функций.

3) Предел произведения функции на постоянную величину

Постоянный коэффициэнт можно выносить за знак предела:

4) Предел произведения

Предел произведения двух функций равен произведению пределов этих функций:

Расширенное свойство предела произведения

Предел произведения нескольких функций равен произведению пределов этих функций:

5) Предел частного

Предел частного двух функций равен отношению пределов этих функций при условии, что предел знаменателя не равен нулю:

2.Вопрос Первый замечательный предел

Следствия

Второй замечательный предел

 или 

Следствия

  1.  для 

3) Вопрос

Непрерывная функция — функция без «скачков», то есть такая, у которой малые изменения аргумента приводят к малым изменениям значения функции.

Непрерывная функция, вообще говоря, синоним понятия непрерывное отображение, тем не менее чаще всего этот термин используется в более узком смысле — для отображений между числовыми пространствами, например, на вещественной прямой. Эта статья посвящена именно непрерывным функциям, определённым на подмножестве вещественных чисел и принимающим вещественные значения.

Точки разрыва

Если условие, входящее в определение непрерывности функции в некоторой точке, нарушается, то говорят, что рассматриваемая функция терпит в данной точке разрыв. Другими словами, если   — значение функции   в точке  , то предел такой функции (если он существует) не совпадает с  . На языке окрестностей условие разрывности функции   в точке  получается отрицанием условия непрерывности рассматриваемой функции в данной точке, а именно: существует такая окрестность точки   области значений функции  , что как бы мы близко не подходили к точке   области определения функции  , всегда найдутся такие точки, чьи образы будут за пределами окрестности точки  .

Устранимые точки разрыва

Если предел функции существует, но он не совпадает со значением функции в данной точке:

тогда точка   называется точкой устранимого разрыва функции   (в комплексном анализе — устранимая особая точка).

Если «поправить» функцию   в точке устранимого разрыва и положить  , то получится функция, непрерывная в данной точке. Такая операция над функцией называется доопределением функции до непрерывной или доопределением функции по непрерывности, что и обосновывает название точки, как точки устранимого разрыва.

Локальные

  • Функция, непрерывная в точке  , является ограниченной в некоторой окрестности этой точки.

  • Если функция   непрерывна в точке   и   (или  ), то   (или  ) для всех  , достаточно близких к  .

  • Если функции   и   непрерывны в точке  , то функции   и   тоже непрерывны в точке  .

  • Если функции   и   непрерывны в точке   и при этом  , то функция   тоже непрерывна в точке  .

  • Если функция   непрерывна в точке   и функция   непрерывна в точке  , то их композиция   непрерывна в точке  .

Глобальные

  • Функция, непрерывная на отрезке (или любом другом компактном множестве), равномерно непрерывна на нём.

  • Функция, непрерывная на отрезке (или любом другом компактном множестве), ограничена и достигает на нём свои максимальное и минимальное значения.

  • Областью значений функции  , непрерывной на отрезке  , является отрезок   где минимум и максимум берутся по отрезку  .

  • Если функция   непрерывна на отрезке   и   то существует точка   в которой  .

  • Если функция   непрерывна на отрезке   и число   удовлетворяет неравенству   или неравенству   то существует точка   в которой  .

  • Непрерывное отображение отрезка в вещественную прямую инъективно в том и только в том случае, когда данная функция на отрезке строго монотонна.

  • Монотонная функция на отрезке   непрерывна в том и только в том случае, когда область ее значений является отрезком с концами   и  .

  • Если функции   и   непрерывны на отрезке  , причем   и   то существует точка   в которой   Отсюда, в частности, следует, что любое непрерывное отображение отрезка в себя имеет хотя бы одну неподвижную точку.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]