
- •Аналитический принцип Гюйгенса - Френеля объяснения явления дифракции света.
- •Вероятностный смысл волновой функции. (71 вопрос)
- •Взаимодействие токов. Магнитное поле токов. Магнитная индукция
- •Внешний фотоэффект и его законы.
- •Вычисление результирующей амплитуды методом графического сложения амплитуд.
- •Гипотеза де Бройля. Волновые свойства микрочастиц.
- •Дефект массы и Энергия связи атомного ядра.(75вопрос)
- •Дисперсия света. Нормальная и аномальная дисперсия. Теория Лоренца объяснения дисперсии.
- •Дифракционная решетка. Условия максимумов и минимумов интенсивности света при дифракции светана дифракционной решетке.
- •Дифракция Фраунгофера на дифракционной решетке.
- •Дифракция Фраунгофера от одной щели.
- •Дифракция света. Дифракция Френеля от круглого диска.
- •Дифракция света. Дифракция Френеля от круглого отверстия.
- •Закон Био-Савара-Лапласа для элемента тока.
- •Закон электромагнитной индукции.
- •Законы Френеля. Вычисление результирующей амплитуды методом зон Френеля.
- •Изотопы, изотоны, изобары, изомеры. Магические ядра.
- •Интерференция света на установке Ньютона. Кольца Ньютона.
- •Интерференция света при отражении от тонкой плоскопараллельной пластинки. Полосы равного наклона.
- •Интерференция света при отражении от тонкой плоскопараллельной пластинки. Полосы равной толщины.
- •Коротковолновая граница тормозного рентгеновского излучения.
- •Лучистый поток. Световой поток. Функция видности.
- •Магнитное поле движущегося заряда.
- •— Закон электромагнитной индукции для движущегося точечного заряда
- •Магнитное поле кругового витка с током.
- •Магнитное поле прямого проводника с током.
- •Модель Атома Резерфорда.
- •Опыты подтверждающие гипотезу де Бройля о волновых свойствах микрочастиц.
- •Опыты Франка и Герца по определению дискретных энергетических уровней атома.
- •Правило Ленца для определения направления индукционного тока.
- •Принцип Ферма. Оптическая длина пути.
- •Прохождение частицы через потенциальный барьер.
- •Поглощение света. Закон Бугера.
- •Закон Бугера
- •Построение изображения в собирающей и рассеивающей линзе.
- •Постулаты Бора. Модель атома водорода по Бору.
- •Поляризация света. Виды поляризации естественного света.
- •Поляризация света при отражении и преломлении. Закон Брюстера.
- •Поляризация света. Получение поляризованного света методом сложения двух взаимно перпендикулярных линейно поляризованных волн.
- •Поляризация света. Закон Малюса.
- •Разность хода. Разность Фаз. Связь между этими величинами. Когерентные волны.
- •Световая волна.Уравнение плоской электромагнитной волны.
- •Свойства ядерных сил.Закон радиоактивного распада.
- •Гамма-распад (изомерный переход)
- •Состав атомного ядра. Ядерные силы.
- •Способы наблюдения интерференции. Зеркала Френеля.
- •Способы наблюдения интерференции. Бипризма Френеля.
- •Тепловое излучение. Закон Кирхгофа.
- •Тепловое излучение. Закон смещения Вина.
- •Тепловое излучение. Закон Стефана-Больцмана.
- •Термоядерные реакции.
- •Уравнение световой волны. Частота и длина волны. Интенсивность света.
- •Условия максимума и минимумов интенсивности при интерференции света.
- •Физические принципы, лежащие в основе создания атомной бомбы.
- •Формула Рэлея-Джинса. Ультрафиолетовая катастрофа.
- •Фотометрические величины.Освещенность.Светимость.
- •Фотометрические величины. Сила света. Телесный угол.
- •Фотометрические величины. Яркость. Связь между светимостью и яркостью.
- •Фотон. Энергия фотона. Формула Планка для теплового излучения ачт.
- •Фотоны. Масса, энергия и импульс фотона.
- •Частица в бесконечно глубокой одномерной потенциальной яме.
- •Ширина интерференционной полосы и расстояние между ними.
Дифракционная решетка. Условия максимумов и минимумов интенсивности света при дифракции светана дифракционной решетке.
Дифракционной решеткой наз-ся совокупность большого числа одинаковых, отстоящих друг от друга на одно и тоже расстояние щелей. Расстояние d между серединами соседних щелей наз-ся периодом решетки.
d=1/N N-число штрихов. Одной из характеристик дифракционной решетки является угловая дисперсия. Угловой дисперсией наз-ся отношение D=Δφ/Δλ=k/dcosφ Таким образом угловая дисперсия увеличивается с уменьшением периодом решетки d и возрастанием порядка спектра k. Дифракционную решетку применяют в спектральных приборах, также в качестве оптических датчиков линейных и угловых перемещений. Обычно дифракция сопровождается появлением max и min интенсивности света, т.е. интерференцией. Условие max интенсивности света dsinφ=+-kλ где k=1,2,3 (номер главного максимума) d- период(постоянная)решетки, φ – угол между нормалью к поверхности решетки и направлением дифракционных волн, λ – длина волны. Условие добавочных минимумов dsinφ =+-kλ/2 k=1,2,3 d-постоянная решетки, φ- угол дифракции, k- порядок спектра.
Дифракция Фраунгофера на дифракционной решетке.
F=ρ2/zλ<<1 Дифракция Фраунгофера – случай дифракции, при котором дифракционная картина наблюдается на значительном расстоянии от отверстия или преграды. Расстояние должно быть таким, чтобы можно было пренебречь выражений для разности фаз членами порядка ρ2/zλ, z- расстояние от отверстия или преграды до плоскости наблюдения, λ – длина волны излучения, ρ – радиальная координата рассматриваемой точки в плоскости наблюдения в полярной системе координат. Дифракция Ф. наблюдается тогда, когда число зон Френеля F<<1. Дифракционные явления Ф. имеют большое практическое значение, лежат в основе принципа действия многих спектральных приборов, в частности дифракционных решеток.
Дифракционная картина на решетке определяется как результат взаимной интерференции волн, идущих от всех щелей, т.е. в дифракционной решетке осуществляется многолучевая интерференция когерентных дифрагированных пучков света.
Дифракция Фраунгофера от одной щели.
Дифракция в параллельных лучах была рассмотрена Фраунгофером в 1821-1822 гг. Для получения пучка параллельных лучей света, падающих на щель или отверстие, обычно пользуются небольшим источником света, который помещается в фокусе собирающей линзы Л.
Рис.4 |
Пусть параллельный пучок монохроматического света падает нормально на непрозрачный экран, в котором прорезана узкая щель ВС, имеющая постоянную ширину b и длину l>>b (см. рис.4,а). Оптическая разность хода между крайними лучами ВМ и CN, идущими от щели под углом к оптической оси линзы OF0 =CD=bsin. Разобьем щель ВСна зоны Френеля, имеющие вид полос, параллельных ребру Вщели. Ширина каждой зоны выбирается (согласно методу зон Френеля) так, чтобы разность хода от краев этих зон была равна /2. |
При интерференции света от каждой пары соседних зон амплитуда результирующих колебаний равна нулю, так как эти зоны вызывают колебания с одинаковыми амплитудами, но противоположными фазами.Всего на ширине щели уместится :
/2= bsin/( /2) зон. Если число зон четное, т.е. bsin (/ 2)= 2m или bsin=/m , m=1,2,3-, (8)
то наблюдается дифракционный минимум (темная полоса).
Если число зон нечетное, т.е. bsin/(/ 2)= (2m+1 )или bsin= (2m+1) , m=1,2,3-, (9)
то наблюдается дифракционный максимум (светлая полоса).
В направлении =0 наблюдается самый интенсивный центральный максимум нулевого порядка.
Распределение интенсивности на экране, полученное вследствие дифракции (дифракционный спектр) приведено на рис.4,б. Расчеты показывают, что интенсивности в центральном и последующем максимумах относятся как 1:0,045:0,016:0,008:-, т.е. основная часть световой энергии сосредоточена в центральном максимуме.
Углы, под которыми наблюдаются максимумы всех порядков, начиная с первого, зависят от длины волны света . Поэтому, если щель освещать немонохроматическим светом, то максимумы, соответствующие разным длинам волн, будут наблюдаться под разными углами и, следовательно, будут пространственно разделены на экране. Получим дифракционный спектр, в отличие от призматического спектра (см. дисперсию).