- •Аналитический принцип Гюйгенса - Френеля объяснения явления дифракции света.
- •Вероятностный смысл волновой функции. (71 вопрос)
- •Взаимодействие токов. Магнитное поле токов. Магнитная индукция
- •Внешний фотоэффект и его законы.
- •Вычисление результирующей амплитуды методом графического сложения амплитуд.
- •Гипотеза де Бройля. Волновые свойства микрочастиц.
- •Дефект массы и Энергия связи атомного ядра.(75вопрос)
- •Дисперсия света. Нормальная и аномальная дисперсия. Теория Лоренца объяснения дисперсии.
- •Дифракционная решетка. Условия максимумов и минимумов интенсивности света при дифракции светана дифракционной решетке.
- •Дифракция Фраунгофера на дифракционной решетке.
- •Дифракция Фраунгофера от одной щели.
- •Дифракция света. Дифракция Френеля от круглого диска.
- •Дифракция света. Дифракция Френеля от круглого отверстия.
- •Закон Био-Савара-Лапласа для элемента тока.
- •Закон электромагнитной индукции.
- •Законы Френеля. Вычисление результирующей амплитуды методом зон Френеля.
- •Изотопы, изотоны, изобары, изомеры. Магические ядра.
- •Интерференция света на установке Ньютона. Кольца Ньютона.
- •Интерференция света при отражении от тонкой плоскопараллельной пластинки. Полосы равного наклона.
- •Интерференция света при отражении от тонкой плоскопараллельной пластинки. Полосы равной толщины.
- •Коротковолновая граница тормозного рентгеновского излучения.
- •Лучистый поток. Световой поток. Функция видности.
- •Магнитное поле движущегося заряда.
- •— Закон электромагнитной индукции для движущегося точечного заряда
- •Магнитное поле кругового витка с током.
- •Магнитное поле прямого проводника с током.
- •Модель Атома Резерфорда.
- •Опыты подтверждающие гипотезу де Бройля о волновых свойствах микрочастиц.
- •Опыты Франка и Герца по определению дискретных энергетических уровней атома.
- •Правило Ленца для определения направления индукционного тока.
- •Принцип Ферма. Оптическая длина пути.
- •Прохождение частицы через потенциальный барьер.
- •Поглощение света. Закон Бугера.
- •Закон Бугера
- •Построение изображения в собирающей и рассеивающей линзе.
- •Постулаты Бора. Модель атома водорода по Бору.
- •Поляризация света. Виды поляризации естественного света.
- •Поляризация света при отражении и преломлении. Закон Брюстера.
- •Поляризация света. Получение поляризованного света методом сложения двух взаимно перпендикулярных линейно поляризованных волн.
- •Поляризация света. Закон Малюса.
- •Разность хода. Разность Фаз. Связь между этими величинами. Когерентные волны.
- •Световая волна.Уравнение плоской электромагнитной волны.
- •Свойства ядерных сил.Закон радиоактивного распада.
- •Гамма-распад (изомерный переход)
- •Состав атомного ядра. Ядерные силы.
- •Способы наблюдения интерференции. Зеркала Френеля.
- •Способы наблюдения интерференции. Бипризма Френеля.
- •Тепловое излучение. Закон Кирхгофа.
- •Тепловое излучение. Закон смещения Вина.
- •Тепловое излучение. Закон Стефана-Больцмана.
- •Термоядерные реакции.
- •Уравнение световой волны. Частота и длина волны. Интенсивность света.
- •Условия максимума и минимумов интенсивности при интерференции света.
- •Физические принципы, лежащие в основе создания атомной бомбы.
- •Формула Рэлея-Джинса. Ультрафиолетовая катастрофа.
- •Фотометрические величины.Освещенность.Светимость.
- •Фотометрические величины. Сила света. Телесный угол.
- •Фотометрические величины. Яркость. Связь между светимостью и яркостью.
- •Фотон. Энергия фотона. Формула Планка для теплового излучения ачт.
- •Фотоны. Масса, энергия и импульс фотона.
- •Частица в бесконечно глубокой одномерной потенциальной яме.
- •Ширина интерференционной полосы и расстояние между ними.
Ширина интерференционной полосы и расстояние между ними.
Ширина интерференционной полосы определяется, как расстояние между соседними интерференционными максимумами или минимумами, интерференционные порядки которых отличаются на единицу. Для рассматриваемой интерференционной картины двух источников волн одинаковой интенсивности в соответствии с выражениями (4.9) ширина полосы оказывается равной: В=лямбда нулевое *L/(nd). Из этой формулы следует, что расстояние между интерференционными полосами растёт при уменьшении d/лямбда . Кроме того, если расстояние до экрана соизмеримо с расстоянием между щелями L ≈d , то ∆B≈лямбда. В этом случае для световых волн, длина волны которых порядка долей микрона, интерференционные полосы неразличимы невооружённым взглядом и для их наблюдения необходимо использовать микроскоп.
Ширина центрального максимума для дифракция от одной щели.
Условие максимума для дифракционной решетки имеет вид
dsinα=+-mλ где m=+-1,+-2….
Максимумы соответствующие этому условию наз-ся главными максимумами. Значение величины m соответствующее тому или иному максимуму наз-ся порядком дифракционного максимума. В точке F0 всегда будет наблюдаться центральный дифракционный максимум т.к. свет, падающий на экран, проходит только через щели в дифракционной решетки.
Энергия магнитного поля, созданного электрическим током.
Согласно
закону сохранения энергии энергия
магнитного поля, созданного током,
равна той энергии, которую должен
затратить источник тока (гальванический
элемент, генератор на электростанции
и др.) на создание тока. При размыкании
цепи эта энергия переходит в другие
виды энергии.
Магнитное
поле,
созданное электрическим током, обладает
энергией, прямо пропорциональной
квадрату силы тока. Энергия магнитного
поля, созданного током, проходящим по
участку цепи с индуктивностью L,
определяется по формуле
Эффект Вавилова-Черенкова при движении быстрых электронов жидкости.
Эффект Вавилова — Черенко́ва (излучение Вавилова — Черенкова) — свечение, вызываемое в прозрачной среде заряженной частицей, которая движется со скоростью, превышающей фазовую скорость распространения света в этой среде[1]. Черенковское излучение широко используется в физике высоких энергий для регистрации релятивистских частиц и определения их скоростей.Теория относительности гласит: ни одно материальное тело, включая быстрые элементарные частицы высоких энергий, не может двигаться со скоростью, превышающейскорость света в вакууме. Но к скорости движения света в прозрачных средах это ограничение не относится. В стекле или в воде, например, свет распространяется со скоростью, составляющей 60—70 % от скорости света в вакууме, и ничто не мешает быстрой частице (например, протону или электрону) двигаться быстрее света в такой среде.В 1934 году Павел Черенков проводил исследования люминесценции жидкостей под воздействием гамма-излучения и обнаружил слабое голубое свечение (которое теперь названо его именем), вызванное быстрыми электронами, выбитыми из атомов среды гамма-излучением. Чуть позже выяснилось, что эти электроны двигались со скоростью выше скорости света в среде. Это был как бы оптический эквивалент ударной волны, которую вызывает в атмосфере сверхзвуковой самолёт. Представить это явление можно по аналогии с волнами Гюйгенса, расходящимися вовне концентрическими кругами со скоростью света, причём каждая новая волна испускается из следующей точки на пути движения частицы. Если частица летит быстрее скорости распространения света в среде, она обгоняет волны. Пики амплитуды этих волн и образуют волновой фронт излучения Черенкова.Излучение расходится конусом вокруг траектории движения частицы. Угол при вершине конуса зависит от скорости частицы и от скорости света в среде. Это как раз и делает излучение Черенкова столь полезным с точки зрения физики элементарных частиц, поскольку, определив угол при вершине конуса, можно рассчитать по нему скорость частицы.
Явление интерференции света. Интенсивность света в точках наложения двух волн.
Впервые явление интерференции было независимо обнаружено Робертом Бойлем (1627—1691 гг.) и Робертом Гуком (1635—1703 гг.). Они наблюдали возникновение разноцветной окраски тонких плёнок (интерференционных полос), подобных масляным или бензиновым пятнам на поверхности воды. Интерференция света — перераспределение интенсивности света в результате наложения (суперпозиции) нескольких когерентных световых волн. Это явление сопровождается чередующимися в пространстве максимумами и минимумами интенсивности. Её распределение называется интерференционной картиной.
Явление полного внутреннего отражения.
Полное внутреннее отражение — внутреннее отражение, при условии, что угол падения превосходит некоторый критический угол. При этом падающая волна отражается полностью, и значение коэффициента отражения превосходит его самые большие значения для полированных поверхностей. Коэффициент отражения при полном внутреннем отражении не зависит от длины волны.
Явление самоиндукции.
Явление самоиндукции - частный случай электромагнитной индукции и, следовательно, для него справедливы все закономерности явления электромагнитной индукции. При этом
Изменяющееся магнитное поле индуцирует ЭДС индукции в том же самом проводнике, по которому течет ток, создающий это поле.
Вихревое магнитное поле препятствует нарастанию тока в проводнике.
При уменьшении тока вихревое поле поддерживает его.
Ядерные реакции. Законы сохранения в ядерных реакциях.
Ядерная реакция – это процесс взаимодействия атомного ядра с другим ядром или элементарной частицей, сопровождающийся изменением состава и структуры ядра и выделением вторичных частиц или γ-квантов. В результате ядерных реакций могут образовываться новые радиоактивные изотопы, которых нет на Земле в естественных условиях.
Первая ядерная реакция была осуществлена Э. Резерфордом в 1919 году в опытах по обнаружению протонов в продуктах распада ядер (см. § 6.5). Резерфорд бомбардировал атомы азота α-частицами. При соударении частиц происходила ядерная реакция, протекавшая по следующей схеме:
|
При ядерных реакциях выполняется несколько законов сохранения: импульса, энергии, момента импульса, заряда. В дополнение к этим классическим законам при ядерных реакциях выполняется закон сохранения так называемого барионного заряда (т. е. числа нуклонов – протонов и нейтронов). Выполняется также ряд других законов сохранения, специфических для ядерной физики и физики элементарных частиц.
Ядерные реакции могут протекать при бомбардировке атомов быстрыми заряженными частицами (протоны, нейтроны, α-частицы, ионы). Первая реакция такого рода была осуществлена с помощью протонов большой энергии, полученных на ускорителе, в 1932 году:
|
Однако наиболее интересными для практического использования являются реакции, протекающие при взаимодействии ядер с нейтронами. Так как нейтроны лишены заряда, они беспрепятственно могут проникать в атомные ядра и вызывать их превращения. Выдающийся итальянский физик Э. Ферми первым начал изучать реакции, вызываемые нейтронами. Он обнаружил, что ядерные превращения вызываются не только быстрыми, но и медленными нейтронами, движущимися с тепловыми скоростями.
Ядерные реакции сопровождаются энергетическими превращениями. Энергетическим выходом ядерной реакции называется величина
Q = (MA + MB – MC – MD)c2 = ΔMc2. |
где MA и MB – массы исходных продуктов, MC и MD – массы конечных продуктов реакции. Величина ΔM называется дефектом масс. Ядерные реакции могут протекать с выделением (Q > 0) или с поглощением энергии (Q < 0). Во втором случае первоначальная кинетическая энергия исходных продуктов должна превышать величину |Q|, которая называется порогом реакции.
Для того чтобы ядерная реакция имела положительный энергетический выход, удельная энергия связи нуклонов в ядрах исходных продуктов должна быть меньше удельной энергии связи нуклонов в ядрах конечных продуктов. Это означает, что величина ΔM должна быть положительной.
