- •Аналитический принцип Гюйгенса - Френеля объяснения явления дифракции света.
- •Вероятностный смысл волновой функции. (71 вопрос)
- •Взаимодействие токов. Магнитное поле токов. Магнитная индукция
- •Внешний фотоэффект и его законы.
- •Вычисление результирующей амплитуды методом графического сложения амплитуд.
- •Гипотеза де Бройля. Волновые свойства микрочастиц.
- •Дефект массы и Энергия связи атомного ядра.(75вопрос)
- •Дисперсия света. Нормальная и аномальная дисперсия. Теория Лоренца объяснения дисперсии.
- •Дифракционная решетка. Условия максимумов и минимумов интенсивности света при дифракции светана дифракционной решетке.
- •Дифракция Фраунгофера на дифракционной решетке.
- •Дифракция Фраунгофера от одной щели.
- •Дифракция света. Дифракция Френеля от круглого диска.
- •Дифракция света. Дифракция Френеля от круглого отверстия.
- •Закон Био-Савара-Лапласа для элемента тока.
- •Закон электромагнитной индукции.
- •Законы Френеля. Вычисление результирующей амплитуды методом зон Френеля.
- •Изотопы, изотоны, изобары, изомеры. Магические ядра.
- •Интерференция света на установке Ньютона. Кольца Ньютона.
- •Интерференция света при отражении от тонкой плоскопараллельной пластинки. Полосы равного наклона.
- •Интерференция света при отражении от тонкой плоскопараллельной пластинки. Полосы равной толщины.
- •Коротковолновая граница тормозного рентгеновского излучения.
- •Лучистый поток. Световой поток. Функция видности.
- •Магнитное поле движущегося заряда.
- •— Закон электромагнитной индукции для движущегося точечного заряда
- •Магнитное поле кругового витка с током.
- •Магнитное поле прямого проводника с током.
- •Модель Атома Резерфорда.
- •Опыты подтверждающие гипотезу де Бройля о волновых свойствах микрочастиц.
- •Опыты Франка и Герца по определению дискретных энергетических уровней атома.
- •Правило Ленца для определения направления индукционного тока.
- •Принцип Ферма. Оптическая длина пути.
- •Прохождение частицы через потенциальный барьер.
- •Поглощение света. Закон Бугера.
- •Закон Бугера
- •Построение изображения в собирающей и рассеивающей линзе.
- •Постулаты Бора. Модель атома водорода по Бору.
- •Поляризация света. Виды поляризации естественного света.
- •Поляризация света при отражении и преломлении. Закон Брюстера.
- •Поляризация света. Получение поляризованного света методом сложения двух взаимно перпендикулярных линейно поляризованных волн.
- •Поляризация света. Закон Малюса.
- •Разность хода. Разность Фаз. Связь между этими величинами. Когерентные волны.
- •Световая волна.Уравнение плоской электромагнитной волны.
- •Свойства ядерных сил.Закон радиоактивного распада.
- •Гамма-распад (изомерный переход)
- •Состав атомного ядра. Ядерные силы.
- •Способы наблюдения интерференции. Зеркала Френеля.
- •Способы наблюдения интерференции. Бипризма Френеля.
- •Тепловое излучение. Закон Кирхгофа.
- •Тепловое излучение. Закон смещения Вина.
- •Тепловое излучение. Закон Стефана-Больцмана.
- •Термоядерные реакции.
- •Уравнение световой волны. Частота и длина волны. Интенсивность света.
- •Условия максимума и минимумов интенсивности при интерференции света.
- •Физические принципы, лежащие в основе создания атомной бомбы.
- •Формула Рэлея-Джинса. Ультрафиолетовая катастрофа.
- •Фотометрические величины.Освещенность.Светимость.
- •Фотометрические величины. Сила света. Телесный угол.
- •Фотометрические величины. Яркость. Связь между светимостью и яркостью.
- •Фотон. Энергия фотона. Формула Планка для теплового излучения ачт.
- •Фотоны. Масса, энергия и импульс фотона.
- •Частица в бесконечно глубокой одномерной потенциальной яме.
- •Ширина интерференционной полосы и расстояние между ними.
Принцип Ферма. Оптическая длина пути.
При́нцип Ферма́ в геометрической оптике — постулат, предписывающий лучу света двигаться из начальной точки в конечную точку по пути, минимизирующему (реже — максимизирующему) время движения (или, что то же самое, минимизирующему оптическую длину пути). В более точной формулировке: свет выбирает один путь из множества близлежащих, требующих почти одинакового времени для прохождения; другими словами, любое малое изменение этого пути не приводит в первом порядке к изменению времени прохождения.
Оптической длиной пути между точками А и В прозрачной среды; расстояние, на которое свет (Оптическое излучение) распространился бы в вакууме за время его прохождения от А до В. Оптической длиной пути в однородной среде называется произведение расстояния, пройденного светом в среде с показателем преломления n, на показатель преломления:
Для неоднородной среды необходимо разбить геометрическую длину на столь малые промежутки, что можно было бы считать на этом промежутке показатель преломления постоянным:
Полная оптическая длина пути находится интегрированием:
Прохождение частицы через потенциальный барьер.
Потенциальный барьер в физике, пространственно ограниченная область высокой потенциальной энергии частицы в силовом поле, по обе
|
|
|
|
На рис. изображен Потенциальный барьер простой формы для случая одномерного (по оси х) движения частицы. В некоторой точке х = x0 потенциальная энергия V (х) принимает максимальное значение V0, называется высотой. Потенциальный барьер Потенциальный барьер делит пространство на две области (Iи II), в которых потенциальная энергия частицы меньше, чем внутри Потенциальный барьер (в области III).
В классической механике прохождение частицы через Потенциальный барьервозможно лишь в том случае, если её полная (кинетическая + потенциальная) энергия Eпревышает высоту Потенциальный барьер E ³ V0; тогда частица пролетает над барьером. Если же энергия частицы недостаточна для преодоления барьера, E < V0, то в некоторой точке x1 частица, движущаяся слева направо, останавливается и затем движется в обратном направлении. То есть Потенциальный барьер является как бы непрозрачной стенкой, барьером, для частиц с энергией, меньшей высоты Потенциальный барьер, - отсюда название «Потенциальный барьер».
В квантовой механике, в отличие от классической, возможно прохождение через Потенциальный барьер частиц с энергией E < V0 (это явление называется туннельным эффектом) и отражение от Потенциальный барьер частиц с E > V0. Такие особенности поведения частиц в квантовой физике непосредственно связаны с корпускулярно-волновой природой микрочастиц.Туннельный эффект существен лишь для систем, имеющих микроскопические размеры и массы. Чем уже Потенциальный барьер и чем меньше разность между высотой Потенциальный барьер и полной энергией частицы, тем больше вероятность для частицы пройти через него.
