Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Шпора по Физике1.docx
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
1.39 Mб
Скачать

Интерференция света при отражении от тонкой плоскопараллельной пластинки. Полосы равной толщины.

ПОЛОСЫ РАВНОЙ ТОЛЩИНЫ - интерференц. полосы, наблюдаемые при освещении тонких оптически прозрачных слоев (плёнок) переменной толщины пучком параллельных лучей и обрисовывающие линии равной оптической толщины. П. р. т. возникают, когда интерференц. картина локализована на самой плёнке. Разность хода между параллельными монохроматич. лучами, отражёнными от верхней и нижней поверхностей плёнки (рис.), равна (n - показатель преломления плёнки, h - её толщина, - угол преломления). Учитывая изменение фазы на при отражении от одной из поверхностей

плёнки, получим, что максимумы интенсивности

(светлые полосы) возникают при разности хода m = 0,1, 2, ..., а минимумы (тёмные полосы) – при

- длина волны света, в к-ром происходит наблюдение). Условие параллельности лучей выполняется, если расстояние от источника света до плёнки значительно больше -расстояния между точками пересечения интерферирующих лучей с поверхностью плёнки. При достаточно малом зрачке наблюдат. прибора это условие выполняется и для протяжённого источника.

Если плёнка идеально одинаковой толщины, то в любом её месте разность хода DL будет одна и та же, условия интерференции будут одинаковыми по всей плёнке, что приведёт к одинаковому по всей площади плёнки оптич. эффекту - ослаблению либо усилению света, а никакие интерференц. полосы не возникнут. На идеальной плоскопараллельной пластине интерференц. полосы возникают при др. схеме наблюдения (см. Полосы равного наклона ).Если же толщина плёнки немного меняется от точки к точке, то интерференц. полосы будут располагаться вдоль участков плёнки с одинаковыми разностями хода DL, т. е. с одинаковыми значениями толщины плёнки h (что и определило их назв.).

Примером регулярных П. р. т., образующихся в воздушном зазоре между двумя сферич. поверхностями или сферой и плоскостью, являются Ньютона кольца .При освещении белым светом разл. толщинам h будут соответствовать разл. l, для к-рых слой обладает наиб. прозрачностью и наим. отражат. способностью. Это создаёт при малых h радужную окраску тонких плёнок (мыльных пузырей, масляных и бензиновых пятен).

П. р. т. используют для определения микрорельефа тонких пластинок и плёнок. П. р. т., возникающие в воздушном зазоре между пробным стеклом и испытуемой поверхностью, характеризуют отклонение испытуемой поверхности от эталонной. Такие измерения обычно ведутся при падении света на поверхность, близком к нормальному. При этом условие для тёмной полосы при = 1 преобразуется в Т. о., расстояние между соседними тёмными (или светлыми) полосами соответствует изменению толщины зазора на , т. е. при наблюдении в видимом свете 0,3 мкм.

Коротковолновая граница тормозного рентгеновского излучения.

Для объяснения свойств теплового излучения пришлось ввести представление об испускании электромагнитного излучения порциями (квантами). Квантовая природа излучения подтверждается также существованием коротковолновой границы тормозного рентгеновского спектра.

Рентгеновское излучение возникает при бомбардировке твердых мишеней быстрыми электронами (рис. 2.6) Здесь анод выполнен из W, Mo, Cu, Pt – тяжелых тугоплавких или с высоким коэффициентом теплопроводности металлов.  Только 1–3 % энергии электронов идет на излучение, остальная часть выделяется на аноде в виде тепла, поэтому аноды охлаждают водой. Попав в вещество анода, электроны испытывают сильное торможение и становятся источником электромагнитных волн (рентгеновских лучей)..

Заметное излучение наблюдается лишь при резком торможении быстрых электронов, начиная с U ~ 50 кВ, при этом  (с – скорость света). В индукционных ускорителях электронов – бетатронах, электроны приобретают энергию до 50 МэВ,  = 0,99995 с. Направив такие электроны на твердую мишень, получим рентгеновское излучение с малой длиной волны. Это излучение обладает большой проникающей способностью.

      Согласно классической электродинамике при торможении электрона должны возникать излучения всех длин волн от нуля до бесконечности. Длина волны, на которую приходится максимум мощности излучения, должна уменьшиться по мере увеличения скорости электронов, что в основном подтверждается на опыте.

Корпускулярно-волновой дуализм света.

КОРПУСКУЛЯРНО-ВОЛНОВОЙ дуализм, заключается в том, что любые микрочастицы материи (фотоны, электроны, протоны, атомы и другие) обладают свойствами и частиц (корпускул) и волн. Количественное выражение корпускулярно-волнового дуализма - соотношение, введенное в 1924 Л. де Бройлем.

Красная граница фотоэффекта. Задерживающий потенциал.

. «Красная» грани́ца фотоэффе́кта — минимальная частота   или максимальная длина волны   света, при которой еще возможен внешний фотоэффект, то есть начальная кинетическая энергия фотоэлектронов больше нуля. Частота   зависит только от работы выхода   электрона:

где   — работа выхода для конкретного фотокатодаh — постоянная Планка, а с — скорость света . Работа выхода  зависит от материала фотокатода и состояния его поверхности. Испускание фотоэлектронов начинается сразу же, как только нафотокатод падает свет с частотой   или с длиной волны  .

Фотоэффе́кт — это испускание электронов веществом под действием света. Название взято из спектра. Чем больше в красную сторону тем меньше энергия фотонов.

Задерживающий потенциал - напряжение, при котором энергия электронов равна работе выхода.