
- •1. Понятие о моделировании. Физические и математические модели.
- •3. Геологические и гидродинамические модели
- •4. Разномасштабные модели фильтрации.
- •5. Существующие лицензированные программные пакеты. Понятие программного продукта.
- •6. Структура типового программного пакета для реализации задач моделирования нефтегазовых месторождений.
- •7. Возможности пре- и пост - процессора лицензированных программ.
- •10. Схематизация пласта и выбор расчетной модели.
- •11. Выбор модели фильтрации.
- •12. Постоянно- действующие модели. Методы и цель создания.
- •13. Основные этапы создания гидродинамической модели месторождения.
- •14.Воспроизведение истории разработки. Основные методы.
- •15.Уравнение сохранения массы при многофазной многокомпонентной фильтрации.
- •16. Абсолютная проницаемость. Методы получения. Способ задания.
- •17.Относительные фазовые проницаемости при двухфазной фильтрации. Методы получения. Способ задания.
- •18. Относительные фазовые проницаемости при трехфазной фильтрации. Методы получения. Способ задания.
- •19. Модель трехфазной фильтрации (Black oil).
- •20.Свойства флюидов и породы, учитываемые в модели трехфазной фильтрации (Black oil). Характерный вид зависимости.
- •21. Пористость и емкостные свойства пласта. Источники информации. Способ задания.
- •22. Моделирование трещиновато-порового пласта.
- •23. Данные о насыщенности и капиллярном давлении. Источники информации и способ задания.
- •24. Факторы, влияющие на определение размеров расчетных блоков.
- •26. Переход от геологической модели к гидродинамической. Процедура масштабирования (upscaling).
- •27.Экспертная оценка при создании гидродинамической модели.
26. Переход от геологической модели к гидродинамической. Процедура масштабирования (upscaling).
Информация о строении и свойствах пласта и насыщающих его жидкостей, о режимах и показателях работы скважин должна быть преобразована к виду, требуемому для ввода в модель фильтрации. Объем пласта рассматривается как упорядоченная совокупность блоков, каждому из которых приписывается по одному значению каждого параметра. Ввод свойств породы и флюидов для каждого расчетного блока, площадь сечения которого в горизонтальной плоскости определяется сотнями квадратных метров при толщине в несколько метров, является очень сложной и трудоемкой задачей. В результате построения фильтрационной модели должна быть создана разностная сетка, учитывающая все крупномасштабные детали строения пласта, зональную и слоистую неоднородность, систему размещения скважин.
Каждому блоку сетки присваивается значение абсолютной глубины кровли, общей и эффективной толщины, пористости, проницаемости в различных направлениях, насыщенности нефтью, водой и газом. Функции фазовых проницаемостей и капиллярного давления от насыщенности обычно задаются в табличном виде для различных зон пласта. В табличном виде в зависимости от давления при пластовой температуре задаются также физические свойства жидкостей (вязкости, объемные коэффициенты, растворимость газа в нефти и в воде, коэффициенты сжимаемости и другие свойства с учетом типа модели) и порового пространства (сжимаемость, возможно, проницаемость и др.). Плотности фаз задаются в стандартных условиях.
Начальное распределение давлений и насыщенностей в пласте может быть либо задано в виде известных значений для каждой ячейки модели, либо вычислено исходя из условия капиллярно - гравитационного равновесия.
На границах объекта моделирования (залежи, участка) обычно задаются перетоки флюидов или давления как функции времени. При моделировании активной водонапорной системы обычно определяется объем и упругий запас законтурной области. При схематизации пласта руководствуются формой залежи и границ зон замещения и выклинивания коллекторов. Сеточные блоки, оказавшиеся за пределами моделируемой области, исключаются из расчетов путем задания для них нулевой проницаемости или порового объема. Если пласт имеет разрывное строение, связанное с наличием глинистых перемычек, тектонических нарушений и т. д., то соответствующие поверхности моделируются как непроницаемые границы между областями. Если разлом является частично проницаемым, то это учитывается в модели введением специального коэффициента множителя для соответствующих межблочных проводимостей.
Для задания скважин указываются сеточные координаты, перечисляются ячейки, вскрываемые скважиной, в том или ином виде приводится коэффициент продуктивности, в зависимости от времени задается коэффициент эксплуатации и режим работы (забойное или устьевое давление, депрессия, дебиты фаз и т. п.)
Приведение данных, полученных разными методами исследований и характеризующихся разными масштабами осреднения к масштабу расчетных блоков (upscaling). Фактически задача масштабирования данных возникает на двух этапах моделирования пласта: во-первых, при распространении данных, полученных на керне, на расчетные блоки геологической модели, а во-вторых, при переходе от геологической модели к гидродинамической. Размерность геологических моделей, построенных по данным трехмерной сейсмики, может составлять миллионы расчетных блоков, тогда как размерность фильтрационной модели, как правило, на порядок меньше. Поэтому при переходе от одной модели к другой осуществляется укрупнение расчетных ячеек. Для определения эффективных характеристик укрупненных расчетных блоков используются различные методы усреднения н масштабирования данных. Это позволяет описывать неоднородный блок сложной структуры как однородный с эффективными параметрами. Задача определения эффективной пористости и насыщенности решается довольно просто: пористость усредняется по объему, а насыщенность - по поровому объему расчетного блока. Проблема усреднения проницаемости, и особенно относительных фазовых проницаемостей, является более сложной и до сих пор остается областью активных научных исследований.