
- •Технологическое оборудование учебно-методический комплекс
- •Содержание
- •Введение
- •Цели и задачи дисциплины Цель преподавания дисциплины
- •Задачи изучения дисциплины
- •Рабочая программа
- •Лекционный курс Введение ( 2 часа )
- •Основы кинематики станков ( 8 часов)
- •Механизмы станков (8 часов)
- •Станки общего назначения (20 часов)
- •Зубо- и резьбообрабатывающие станки (8 часа)
- •Станки с чпу (8 часов)
- •Промышленные роботы и роботизированные технологические комплексы (4 часа)
- •Станки для электрофизической и электрохимической обработки (4 часа)
- •Лабораторные занятия
- •Методика изучения основных разделов дисциплины Введение в станковедение
- •Основы кинематики металлорежущих станков
- •Изучение кинематической структуры металлорежущих станков
- •1 Об. Заготовки (в2 ± в4) → z/k∙(1±s/t), об. Фрезы (в1),
- •1 Об. Заготовки → s мм продольного перемещения фрезы.
- •Конснект лекций
- •1.1. Краткий экскурс развития станкостроения
- •1.2. Замечательные изобретения и пионерные научные решения
- •1.2.1 Замечательные изобретения средневековья
- •1.2.2. Пионерные научные решения
- •1.3.Классификация металлорежущих станков
- •1.3.1. По технологическому признаку
- •1.3.2. По степени точности
- •1.3.3. По универсальности
- •1.3.4. Система обозначения станков
- •1.4. Технико-экономические показатели современных станков
- •1.4.1. Эффективность
- •1.4.2. Производительность
- •1.4.3. Надежность
- •1.4.4.Гибкость
- •1.4.5.Точность
- •2. Основы кинематики металлорежущих станков
- •2.1. Формообразование поверхностей
- •2.1.1. Методы воспроизведения производящих линий
- •2.1.2. Образование поверхностей
- •2.1.3. Классификация движений в станках
- •2.2. Понятие о кинематической группе
- •2.3. Кинематическая структура станка
- •2. 4. Теоретические основы настройки станков
- •1 Оборот червячной фрезы → k/z оборота заготовки,
- •Расчетные перемещения внутренних связей
- •1 Оборот распределительного вала (рв) → zi /z оборотов заготовки,
- •Расчетные перемещения для цепей подач
- •1 Двойной ход долбяка → поворота долбяка.
- •2.5. Механические органы кинематической настройки
- •2.5.1. Шестеренчатые коробки скоростей
- •2.5.2. Гитары сменных зубчатых колес
- •2.5.3. Механизмы для бесступенчатого изменения скорости
- •2.5.4.Реверсивные механизмы
- •2.5.5. Суммирующие механизмы
- •2.5.6. Механизмы обгона
- •2.5.7. Механизмы периодического движения
- •2.5.8. Предохранительные устройства
- •3. Изучение кинематической структуры металлорежущих станков
- •3.1. Группа токарных станков
- •3.1.1. Токарно-винторезные станки
- •1 Оборот шпинделя → sпрод перемещения каретки (п2).
- •1 Оборот шпинделя → sпоп перемещения поперечного суппорта (п4).
- •1 Оборот шпинделя (в1) → t перемещения каретки (п2),
- •3.1.2. Токарно-револьверные станки
- •1 Оборот шпинделя → sпрод.. Мм перемещения суппорта (п1).
- •1 Оборот шпинделя → sкр. Мм перемещения револьверной головки (п3).
- •3.1.3. Токарно-карусельные станки
- •1 Оборот планшайбы → sв мм вертикального перемещения
- •1 Оборот планшайбы → sг мм горизонтального перемещения
- •3.2. Станки сверлильно-расточной группы
- •3.2.1. Сверлильные станки
- •3.2.2. Расточные станки
- •1 Оборот шпинделя (в1) → t мм осевого перемещения шпинделя (п8).
- •3.3. Станки фрезерной группы
- •3.4. Шлифовальные и доводочные станки
- •3.4.1. Круглошлифовальные станки
- •3.4.2. Внутришлифовальные станки
- •3.4.3. Плоскошлифовальные станки
- •3.4.4. Бесцентрово-шлифовальные станки
- •3.4.5. Доводочные станки
- •3.5. Станки строгально-протяжной группы
- •3.5.1. Строгальные станки
- •36/48 → М4 → тв X → поперечная каретка стола б (п3).
- •3.5.2. Протяжные станки
- •3.6. Группа станков для обработки зубчатых колес
- •3.6.1. Фасонное зубофрезерование зубчатых колес
- •1/Z об. Шпинделя → n (zф – z) / zф ∙z дополнительного поворота лимба.
- •1 Об. Рукоятки 4 → 1/z поворота шпинделя.
- •3.6.2. Зубофрезерные станки
- •1 Об. Фрезы (в1) → k/z об. Заготовки (в2),
- •1 Об. Заготовки → sв перемещения фрезы (п3),
- •1 Об. Стола → sр перемещения стойки суппорта (п7),
- •1 Об. Заготовки → sо перемещения фрезы (п5),
- •1 Об. Заготовки (в1) → об. Фрезы (в2),
- •1 Об. Заготовки → об. Фрезы (в2).
- •3.6.3. Зубодолбежные станки
- •1 Дв. Ход долбяка → sкр/π m z об. Долбяка.
- •1 Дв. Ход долбяка → sкр мм перемещения по дуге,
- •3.6.4. Станки для зуботочения цилиндрических зубчатых колес
- •3.7. Станки для чистовой обработки зубчатых колес
- •3.7.1. Зубошевинговальные станки
- •1,45 П мм перемещения шток-рейки → sр мм/ход стола (п3).
- •3.7.2. Зубошлифовальные станки
- •1 Об. Заготовки (в4) → πmz мм перемещения каретки (п3),
- •1 Об. Абразивного червяка (в1) → k/z об. Шлифуемого колеса (в2).
- •1 Об. Абразивного червяка (в1) → z/k (1 ± sв/t) об. Шлифуемого колеса (в2±в4),
- •3.8. Станки для обработки конических зубчатых колес
- •1 Об. Люльки (в3) → zп/z об. Заготовки (в2).
- •1 Об. Распределительного вала → (nМ/60) tц об. Электродвигателя.
- •1Об. Распределительного вала → zi/z об. Заготовки.
- •3.9. Станки для обработки резьбы
- •3.9.1. Резьбофрезерные станки
- •1 Об. Шпинделя заготовки (в2) → s мм перемещения суппорта фрезы (п3).
- •57/38 → 29/26 → 15/15 → 30/30 → Кулачок 6 (п4).
- •1 Оборот заготовки → t мм. Перемещения фрезы,
- •1 Об. Заготовки (в3) → t мм перемещения суппорта фрезы (п4).
- •1 Об. Шпинделя 1 заготовки → s мм перемещения суппорта фрезы (п4).
- •3.9.2. Резьбонакатные станки
- •3.9.3. Резьбошлифовальные станки
- •1 Об. Шпинделя заготовки (в2) → t мм премещения суппорта (п3).
- •1 Об. Кулачка врезания 3 → п об. Шпинделя заготовки.
- •3.10.Токарные автоматы и полуавтоматы
- •3.10.1. Классификация станков - автоматов и полуавтоматов
- •3.10.2. Многорезцовые полуавтоматы
- •3.11. Станки с числовым программным управлением
- •3.11.1. Поколения станков с чпу
- •3.11.2. Технологические особенности станков с чпу
- •3.11.3. Конструктивные особенности станков с чпу
- •3.11.4. Станки с чпу первого поколения
- •3.11.5. Многооперационные станки с чпу
- •3.12. Промышленные роботы
- •3.12.1. Поколения промышленных роботов
- •3.12.2. Роботизированные технологические комплексы
- •3. 13. Агрегатные станки
- •3.13.1. Типовые унифицированные компоновки
- •3.13.2. Силовые узлы
- •3.13.3. Гидропанели
- •3.13.4. Шпиндельные узлы
- •3.14. Станки для электрофизической и электрохимической обработки
- •3.14.1. Электроэрозионные станки
- •3.14.2. Комбинированные схемы обработки
- •3.14.3. Лазерное оборудование
- •3.14.4. Раскрой листового материала струей жидкости
- •Вопросы к экзамену
- •Организация рейтингового контроля
- •Словарь специфических терминов
- •Литература Основная
- •Дополнительная
- •Методическая
1 Об. Абразивного червяка (в1) → k/z об. Шлифуемого колеса (в2).
УКЦ:
k/z = 1∙(99/99)∙(пМ1=1500/пМ2=1500)∙(60/80)∙[ix=(a/b) (c/d) (e/f)]∙(26/156).
ФН при однозаходном абразивном червяке (k = 1):
- для z = 12 – 24 при e/f = 58/58, ix = (a/b) (c/d) = 8/z;
-для z = 24 – 200 при e/f =29/87, ix = (a/b) (c/d) = 8/3z.
РП при шлифовании колеса с винтовым зубом:
1 Об. Абразивного червяка (в1) → z/k (1 ± sв/t) об. Шлифуемого колеса (в2±в4),
где T – шаг винтовой линии зуба шлифуемого колеса; sв – вертикальная подача червяка.
УКЦ:
z/k (1 ± sв /T) = 1∙(99/99)∙(1500/1500)∙ix.
ФН при e/f = 58/58:
ix = (a/b) (c/d) = 8/[z(1±sв/T)].
Правила выбора знаков «+» или «-» и установки абразивного червяка такие же как и при установки червячной фрезы при обработке цилиндрических зубчатых колес.
Для создания постоянного момента на шпинделе шлифуемого колеса и выборки зазора кинематической цепи электродвигатель М2 – шпиндель установлен гидротормоз, вращающийся от шпиндельной шестерни 156, через шестерню 26 и сменные шестерни k и m.
Группа Фs(П3) сообщает поступательно-возвратное движение вертикальной подачи суппорту шлифуемого колеса. Внутренняя связь группы:
вертикальные направляющие → суппорт,
Внешняя связь – кинематическая цепь:
М → 50/70 (или 68/52) → 1/34 → ТВ → суппорт (П3).
В этой группе используется регулируемый электродвигатель. Диапазон его регулирования совместно с двухступенчатым перебором, переключаемым электромагнитными муфтами ЭМ1 и ЭМ2, обеспечивает подачу 3,78 – 165 мм/мин. Другие параметры настройки: исходная точка, путь и направление устанавливаются по упорам, обеспечивающим соответствующие переключения в схеме электроавтоматики. Одновременно с изменением направления движения вертикальной подачи синхронно изменяется направление движения Фv.
В станке предусмотрены также кинематические группы врезания и правки абразивного круга. Группа врезания Вр(П4) – простая. Ее внутренняя связь:
горизонтальные направляющие → шлифовальная бабка.
Внешняя связь:
гидроцилиндр 1 → шестерня 35 → храповой механизм →
→ винт 2 → рычаг 3 → следящий золотник 4 →
→ гидроцилиндр 5 с поршнем-винтом 6 → шлифовальная бабка (П4).
Группа работает следующим образом. По команде от системы управления рейка поршень-гидроцилиндра 1 сообщает качательное движение шестерне 35, связанной с водилом собачки храпового механизма. Собачка поворачивает храповое колесо 120, а вместе с ним винт 2, который через рычаг 3 перемещает следящий золотник 4, перемещающий поршень-винт 6 гидроцилиндра 5 вместе с шлифовальной бабкой. Подачу врезания (параметр «скорость») настраивают по лимбу 7 через зубчатую передачу 24/180 на храповое колесо 120. Диапозон радиальной подачи врезания на один ход суппорта 0,02 – 0,08 мм. Команда на радиальное смещение шлифовальной бабки осуществляется от гидроэлектрического золотника, управляющего рейкой-поршнем, при подаче сигналов от конечного выключателя, установленного на стойке и регистрирующего крайнее положение при ходе суппорта шлифуемого колеса. Наладочное радиальное перемещение шлифовальной бабки осуществляют вручную от маховика 8 через передачу 30/75 на винт 6.
Вспомогательная группа правки абразивного червяка Вс(В5П6) –сложная. Ее внутренняя связь:
(В5) накатник → абразивный червяк → 90/90 →
→ 1/[iy = (a1/b1) (c1/d1)] → 66/66 → ТВ (П6).
Внешняя связь:
М3 → 26/78 → 2/36 → 62/64 → вал, несущий колесо z = 90.
Группа настраивается на траекторию – гитарой iy; на скорость – изменением круговой частоты двухскоростного электродвигателя М3; на путь и исходную точку – упорами системы управления.
Гитара iy. РП:
1 об. абразивного червяка → πmn перемещения накатника на шаг червяка,
где mn – модуль нормальный абразивного червяка.
УКЦ:
πmn – 1 (90/90) iy (66/66) (tТВ = 2π). ФН: iy = mn/2.
Модуль многониточного накатника равен или больше в целое число раз нормального модуля абразивного червяка.
Абразивный червяк правится при малых скоростях и выключенном электродвигателе М1 по расчетной кинематической цепи (УКЦ):
п = 1420 или 2850 (26/78) (2/36) (62/64) (90/90)=25 или 50 мин-1.
Первое значение круговой частоты абразивного круга используется при правке на рабочем ходе, второе значение – при правке на ускоренном ходе.. Правка абразивного червяка бывает предварительная и окончательная и выполняется многониточным накатником или алмазными резцами. Накатник приводится во вращение абразивным червяком. Алмазные резцы устанавливают вдоль образующих профиля червяка в одной плоскости. Контроль профиля витка абразивного червяка осуществляют микроскопом, устанавливаемым на салазках механизма правки.
Поворот суппорта на угол наклона зуба шлифуемого колеса осуществляют вручную квадратом однозаходного червяка червячного колеса 25. Смещение стойки с суппортом в горизонтальной плоскости для использования рабочей ширины абразивного червяка при шлифовании зубчатых колес осуществляют вручную маховиком 9 через передачу 20/100 и передачу винт – гайка 10. Гидросистема станка обеспечивает зажим шлифуемых колес, поджим заднего подшипника шпинделя абразивного червяка, выбор зазора в делительной цепи гидротормоза и отвод шлифовальной бабки.