
- •1. Принцип действия трансформатора, устройство, основные показатели
- •2. Группы соединения трансформатора, определение, отличия, применение
- •3. Схема замещения трансформатора, уравнения эдс и намагничивающих сил
- •4. Внешняя характеристика трансформатора.
- •5 Коэффициент полезного действия трансформатора и классификация потерь в нем
- •6 Условия параллельной работы трансформаторов
- •7 Автотрансформаторы, особенности конструкции, принцип действия, характеристики
- •8 Сварочный трансформатор
- •9 Измерительные трансформаторы
- •10. Условия создания вращающегося магнитного поля в трехфазной системе
- •11. Условия создания вращающегося магнитного поля в однофазной системе
- •12. Устройство и принцип действия асинхронной машины
- •13 Режимы работы асинхронной машины
- •14 Понятие скольжения
- •15 Пуск в ход асинхронного двигателя
- •1 6 Энергетическая диаграмма асинхронного двигателя
- •17 Коэффициент полезного действия и классификация потерь мощности
- •18 Регулирование частоты вращения асинхронного двигателя
- •19 Однофазные конденсаторные двигатели, конструкция, особенности работы и пуска
- •20 Основные уравнения асинхронной машины и их физическая сущность
- •21. Механические характеристики ад
- •22. Ад с фазным ротором
- •23. Реостатный пуск ад с фазным ротором
- •24. Исполнительные асинхронные двигатели
- •25. Принцип действия синхронного генератора и синхронного двигателя
- •26. Пуск в ход и регулирование частоты вращения.
- •28. Характеристики синхронной машины
- •29. Параметры синхронных машин. Суть метода двух реакций.
- •30. Синхронно-реактивные двигатели
- •31. Синхронный компенсатор
- •32. Синхронные двигатели с постоянными магнитами
- •33. Условия включения синхронных генераторов на параллельную работу
- •34. Угловая характеристика синхронной машины
- •35. Конструкция и принцип действия двигателя постоянного тока независимого возбуждения
- •36. Регулирования частоты вращения двигателей постоянного тока
- •Коммутация в машинах постоянного тока
- •Способы регулирования частоты вращения двигателя постоянного тока
- •Характеристики генератора постоянного тока
- •41. Реакция якоря в машине постоянного тока
- •42. Принцип действия генератора постоянного тока. Назначение коллектора
- •43. Двигатели постоянного тока с самовозбуждением
- •44. Двигатели постоянного тока в системах автоматики
31. Синхронный компенсатор
Синхронный компенсатор представляет собой синхронный двигатель, работающий без нагрузки на валу; при этом по обмотке якоря проходит практически только реактивный ток.
Обычно электрическая сеть, питающая электроэнергией промышленные предприятия, нагружена током Iн, отстающим по фазе от напряжения сети Uc. Это объясняется тем, что от сети получают питание асинхронные двигатели, у которых реактивная составляющая тока довольно велика. Для улучшения cos φ сети синхронный компенсатор должен работать в режиме перевозбуждения. При этом ток возбуждения регулируется так, чтобы ток якоря Íа синхронного компенсатора опережал на 90° напряжение сети Úc и был примерно равен реактивной составляющей Íн.р тока нагрузки Íн . В результате сеть загружается только активным током нагрузки Íс= Íн.а .
|
|
Если напряжение сети в точке подключения синхронного компенсатора несколько понижается из-за возрастания тока нагрузки Iн и становится меньше Uс.ном , то синхронный компенсатор начинает забирать из сети реактивный опережающий ток Íа. Это уменьшает падение напряжения в ней на величину ΔUк = Ia Xc . При повышении напряжения в сети, когда Uc > Uс.ном , синхронный компенсатор загружает сеть реактивным отстающим током Íа, что приводит к увеличению падения напряжения на величину ΔUк = IaXc . При достаточной мощности синхронного компенсатора колебания напряжения в сети не превышают 0,5 —1,0 %. Недостатком указанного метода стабилизации напряжения является то, что синхронный компенсатор загружает линию реактивным током, увеличивая потери в ней.
32. Синхронные двигатели с постоянными магнитами
Синхронные двигатели с постоянными магнитами довольно просты по конструкции, надежны в работе и обладают значительной устойчивостью.
Электромагнитные процессы в машинах с постоянными магнитами протекают так же, как и в генераторах с электромагнитным возбуждением. Однако значительная реакция якоря во время пуска или при коротком замыкании может вызвать необратимое размагничивание постоянных магнитов, в результате чего после снятия размагничивающего действия свойства постоянного магнита не будут полностью восстановлены. Для уменьшения действия реакции якоря на постоянные магниты расстояние между полюсными наконечниками соседних полюсов делают значительно меньше, чем в машинах с электромагнитным возбуждением. В этом случае поток реакции якоря Фq в значительной степени замыкается через полюсные наконечники, не подвергая размагничиванию постоянные магниты.
Для возможности пуска в полюсных наконечниках располагается пусковая короткозамкнутая обмотка, выполненная по типу «беличьей клетки». При разгоне поток постоянных магнитов индуктирует в обмотке якоря э. д. с, которая имеет частоту вращения f = f1(1—s). Вызываемый этой э. д. с. ток замыкается через сеть и создает потери, покрываемые за счет подводимой к ротору механической мощности Рт. В результате на ротор при пуске двигателя действует тормозной момент величина которого зависит от скольжения s. Тормозной момент Мт обычно имеет максимум при скольжении s = 0,9÷0,6.
В машинах с электромагнитным возбуждением э. д. с. Е0 определяется лишь остаточным намагничиванием и имеет величину, не превышающую нескольких процентов. Поэтому
в двигателе с постоянными магнитами ток Iп имеет значительно большую величину.
Рабочие характеристики двигателей с постоянными магнита ми мало отличаются от характеристик двигателей с обмоткой возбуждения.
Недостатком двигателей с постоянными магнитами является сравнительно низкий коэффициент мощности и сложность изготовления ротора.