Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
tsitologia_modulmk.doc
Скачиваний:
4
Добавлен:
01.03.2025
Размер:
266.75 Кб
Скачать

28.Симбиотическая теория происхождения митохондрий

Гипотезу о происхождении митохондрий и растительных пластид из внутриклеточных бактерий-эндосимбионтов высказал Р. Альтман в 1890 г. За век гипотеза переросла в теорию, основанную на большом фактическом материале. Суть ее такова: с появлением фотосинтезирующих бактерий в атмосфере Земли накапливался кислород — побочный продукт их метаболизма. С ростом его концентрации усложнялась жизнь анаэробных гетеротрофов, и часть из них для получения энергии перешла от бескислородного брожения к окислительному фосфорилированию. Такие аэробные гетеротрофы могли с большим КПД, чем анаэробные бактерии, расщеплять органические вещества, образующиеся в результате фотосинтеза. Часть свободно живущих аэробов была захвачена анаэробами, но не «переварена», а сохранена в качестве энергетических станций, митохондрий. Не стоит рассматривать митохондрии как рабов, взятых в плен, чтобы снабжать молекулами АТФ не способные к дыханию клетки. Они скорее «существа», еще в протерозое нашедшие для себя и своего потомства лучшее из убежищ, где можно затрачивать наименьшие усилия, не подвергаясь риску быть съеденными.

В пользу симбиотической теории говорят многочисленные факты:

совпадают размеры и формы митохондрий и свободно живущих аэробных бактерий; те и другие содержат кольцевые молекулы ДНК

по нуклеотидным последовательностям рибосомные и транспортные РНК митохондрий отличаются от ядерных, демонстрируя при этом удивительное сходство с аналогичными молекулами некоторых аэробных грамотрицательных эубактерий;

митохондриальные РНК- полимеразы, хотя и кодируются в ядре клетки, ингибируются рифампицином, как и бактериальные, а эукариотические РНК- полимеразы нечувствительны к этому антибиотику;

белковый синтез в митохондриях и бактериях подавляется одними и теми же антибиотиками, не влияющими на рибосомы эукариот;

липидный состав внутренней мембраны митохондрий и бактериальной плазмалеммы сходен, но сильно отличается от такового наружной мембраны митохондрий, гомологичной другим мембранам эвкариотических клеток;

кристы, образуемые внутренней митохондриальной мембраной, являются эволюционными аналогами мезосомных мембран многих прокариот;

до сих пор сохранились организмы, имитирующие про межуточные формы на пути к образованию митохондрий из бактерий (примитивная амеба Pelomyxa не имеет митохондрий, но всегда содержит эндосимбиотические бактерии).

Существует представление, что разные царства эвкариот имели разных предков и эндосимбиоз бактерий возникал на разных этапах эволюции живых организмов. Об этом же говорят отличия в строении митохондриальных геномов простейших, грибов, растений и высших животных. Но во всех случаях основная часть генов из промитохондрий попала в ядро, возможно, с помощью мобильных генетических элементов. При включении части генома одного из симбионтов в геном другого интеграция симбионтов становится необратимой.

Новый геном может создавать метаболические пути, приводящие к образованию полезных продуктов, которые не могут быть синтезированы ни одним из партнеров по отдельности. Так, синтез стероидных гормонов клетками коры надпочечников представляет собой сложную цепь реакций, часть которых происходит в митохондриях, а часть — в эндоплазматической сети. Захватив гены промитохондрий, ядро получило возможность надежно контролировать функции симбионта. В ядре кодируются все белки и синтез липи-дов наружной мембраны митохондрий, большинство белков матрикса и внутренней мембраны органелл. Самое главное, что ядро кодирует ферменты репликации, транскрипции и трансляции мтДНК, контролируя тем самым рост и размножение митохондрий. Скорость роста партнеров по симбиозу должна быть приблизительно одинаковой. Если хозяин будет расти быстрее, то с каждым его поколением число симбионтов, приходящихся на одну особь, будет уменьшаться, и, в конце концов, появятся потомки, не имеющие митохондрий. Мы знаем, что в каждой клетке организма, размножающегося половым путем, содержится много митохондрий, реплицирующих свои ДНК в промежутке между делениями хозяина. Это служит гарантией того, что каждая из дочерних клеток получит по крайней мере одну копию генома митохондрии.

 29. В клетках растений имеются микроскопические образования — хлоропласты. Это органоиды, в которых происходит поглощение энергии и света и превращение ее в энергию АТФ и иных молекул — носителей энергии. В гранах хлоропластов содержится хлорофилл — сложное органическое вещество. На нем и происходит фотосинтез.

Фотосинтез – процесс синтеза органических веществ из неорганических, который происходит с использованием световой энергии и с участием хлорофилла.

Основным фотосинтезирующим пигментом высших растений является хлорофилл. По химической структуре различают хлорофилл а, в, с, д. Фотосинтез- сложный, многоступенчатый процесс,который состоит из 2 фаз: световой и темновой. Световая – происходит только на свету, в гранах хлоропластов, хлорофилл находится в мешочках – тилакоидах. В результате обр. О2(фотолиз воды – расщепление воды под действием света на О2 и Н2, образование АтФ, образование НАДФ∙Н

Световая фаза фотосинтеза

Квант красного света, поглощенный хлорофиллом, переводит электрон в возбужденное состояние. Возбужденный электрон приобретает большой запас энергии, вследствие чего перемещается на более высокий энергетический уровень. Возбужденный электрон, как по ступеням, перемещается по цепи сложных органических соединений, встроенных в хлоропласт. Перемещаясь с одной ступени на другую, электрон теряет энергию, которая используется для синтеза АТФ. Растративший энергию электрон возвращается к хлорофиллу. Новая порция световой энергии вновь возбуждает электрон хлорофилла. Он снова проходит по тому же пути, расходуя энергию на образования молекул АТФ. Ионы водорода и электроны, необходимые для восстановления молекул-носителей энергии, образуются при расщеплении молекул воды. Расщепление молекул воды в хлоропластах осуществляется специальным белком под воздействием света - фотолиз воды. Таким образом, энергия солнечного света непосредственно используется растительной клеткой для: 1. возбуждения электронов хлорофилла, энергия которых далее расходуется на образование АТФ и других молекул-носителей энергии; 2. фотолиза воды, поставляющего ионы водорода и электроны в световую фазу фотосинтеза. При этом выделяется кислород как побочный продукт реакций фотолиза. .

Темновая фаза фотосинтеза

Проходит в стромах хлоропластов, проходит всегда только после световой, через устьице попадает СО2, из световой фазы идет АТФ, НАДФ∙Н, образуется глюкоза, которая превращается в крахмал.

Темновая: синтез АТФ, восстановление НАДФ, который используется при восстановлении СО2 и синтезе углеводов.

Контроль реакций цикла светом включает ряд механизмов:

1) световые реакции фотосинтеза обеспечивают синтез АТФ и НАДФН — соединений, непосредственно используемых в цикле Кальвина;

2) создание на свету в строме хлоропластов оптимальных для активности ряда ферментов цикла Кальвина условий рН и концентрации ионов Mg2+;

3) светозависимая ковалентная модификация ферментов цикла Кальвина через систему тиоредоксина

В хлоропластах есть пятиуглеродные сахара, один из которых рибулозодифосфат, является акцептором углекислого газа. Особый фермент связывает пятиуглеродный сахар с углекислым газом воздуха. При этом образуется соединения, которые за счет энергии АТФ и иных молекул-носителей энергии восстанавливаются до шестиуглеродной молекулы глюкозы. Таким образом, энергия света, преобразованная в течение световой фазы в энергию АТФ и иных молекул-носителей энергии, используется для синтеза глюкозы. Эти процессы могут идти в темноте. Из растительных клеток удалось выделить хлоропласты, которые в пробирке под действием света осуществляли фотосинтез — образовывали новые молекулы глюкозы, при этом поглощали углекислый газ. Если прекращали освещать хлоропласты, то приостанавливался и синтез глюкозы. Однако если к хлоропластам добавляли АТФ и восстановленные молекулы-носители энергии, то синтез глюкозы возобновлялся и мог идти в темноте. Это означает, что свет действительно нужен только для синтеза АТФ и зарядки молекул-носителей энергии.Поглощение углекислого газа и образование глюкозы в растениях называют темновой фазой фотосинтеза, поскольку она может идти в темноте. Интенсивное освещение, повышенное содержание углекислого газа в воздухе приводят к повышению активности фотосинтеза.

6СО2+18АТФ+12НАДФ ∙ Н2 = С6Н12О6+18АДФ+18Ф+18НАДФ+6Н2О

Ф-остаток фосфорной кислоты

В темновой фазе происходит восстановление СО2 до глюкозы.

30. Хромопласты отличаются от других пластид своеобразной формой (дисковидной, зубчатой, серповидной, треугольной, ромбической и др.) и окраской (оранжевые, желтые, красные). Хромопласты лишены хлорофилла и поэтому не способны к фотосинтезу. Внутренняя мембранная структура их слабо выражена.

Типы:

- кристаллический(каротиноиды откладываются в виде кристаллов)

- глобулярный( каротиноиды в липидных глобулах)

- фибриллярный (каротиноиды в виде собранных пучков)

Не превращаются в другие типы пластиды Хромопласты есть в клетках лепестков многих растений (лютиков, калужниц, нарциссов, одуванчиков и др.), зрелых плодов (томаты, рябина, ландыш, шиповник) и корнеплодов (морковь, свекла), а также листьев в осеннюю пору. Лейкопласты — мелкие бесцветные пластиды различной формы. Они бывают шаровидными, эллипсоидными, гантелевидными, чашевидными и т. д. у них слабо развита внутренняя мембранная система. Есть ламеллы. Амилопласты- крахмал Олеопласты – жир Протеопласты (алейронопласты)-белки Лейкопласты в основном встречаются в клетках органов, скрытых от солнечного света (корней, корневищ, клубней, семян). Они осуществляют вторичный синтез и накопление запасных питательных веществ — крахмала, реже жиров и белков.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]