Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
УЧЕБНО-МЕТОДИЧЕСКОЕ ПОСОБИЕ ДЛЯ СТУДЕНТА_1.doc
Скачиваний:
0
Добавлен:
01.03.2025
Размер:
3.99 Mб
Скачать

Тема 2 определители. Вычисление определителей второго и третьего порядков

КОНСПЕКТ 2

2.1 ОПРЕДЕЛИТЕЛИ ВТОРОГО ПОРЯДКА

Определителем второго порядка (соответствующим данной матрице

) называется число

Пример1: Вычислим определитель матрицы

Пример 2. Вычислить определители второго порядка:

2(-4) - 5(-3) = -8 + 15 = 7

=

2.2 ОПРЕДЕЛИТЕЛИ ТРЕТЬЕГО ПОРЯДКА

Пусть дана квадратная матрица третьего порядка:

А =

Определителем (или детерминантом) третьего порядка, соответствующим данной матрице, называют число

d et A = =

Пример 3

Первый способ решения:

Формула длинная и допустить ошибку по невнимательности проще простого. Как избежать досадных промахов? Для этого придуман второй способ вычисления определителя, который фактически совпадает с первым. Называется он способом Саррюса или способом «параллельных полосок». Суть состоит в том, что справа от определителя приписывают первый и второй столбец и аккуратно карандашом проводят линии:

Множители, находящиеся на «красных» диагоналях входят в формулу со знаком «плюс». Множители, находящиеся на «синих» диагоналях входят в формулу со знаком минус:

Пример 3

Второй способ решения:

Сравните два решения. Нетрудно заметить, что это ОДНО И ТО ЖЕ, просто во втором случае немного переставлены множители формулы, и, самое главное, вероятность допустить ошибку значительно меньше.

Пример 4

Вычислить определитель третьего порядка:

Пример 5

Вычислить определитель третьего порядка

ПРАКТИКУМ 2

ЗАДАНИЕ N 1 Тема: Определители второго порядка Если определитель второго порядка , то  …

Решение: Так как определитель второго порядка равен числу, которое получают по правилу:

 то

По условию , тогда

ЗАДАНИЕ N 2 Тема: Определители второго порядка Если определитель второго порядка

, то  …

Решение: Напоминаем, что определитель второго порядка равен числу, которое получают по правилу:

В нашем случае имеем

По условию , тогда

ЗАДАНИЕ N 3

Тема: Определители второго порядка Если определитель второго порядка

, то  …

Решение: Так как определитель второго порядка равен числу, которое получают по правилу:

 то

По условию , тогда

ЗАДАНИЕ N 4 Тема: Определители второго порядка Если определитель второго порядка , то  …

Решение: Напоминаем, что определитель второго порядка равен числу, которое получают по правилу:

В нашем случае имеем

По условию , тогда

ЗАДАНИЕ N 5 Тема: Определители третьего порядка Значение определителя третьего порядка можно вычислить, используя «правило треугольников», которое схематически указано на рисунках. Тогда определитель  равен …

Решение: Определитель третьего порядка равен сумме шести слагаемых, из которых три берутся со знаком «+» и три – со знаком «−». Правило вычисления слагаемых со знаком «+» схематически указано на рис. 1. Одно из слагаемых равно произведению элементов определителя, лежащих на главной диагонали. Каждое из двух других находится как произведение элементов, лежащих на параллели к этой диагонали, с добавлением третьего множителя из противоположного угла определителя. Слагаемые со знаком «−» получаются таким же образом, но относительно второй диагонали (рис. 2). Тогда

ЗАДАНИЕ N 6

Тема: Определители третьего порядка Значение определителя третьего порядка можно вычислить, используя «правило треугольников», которое схематически указано на рисунках. Тогда определитель  равен …

Решение: Определитель третьего порядка равен сумме шести слагаемых, из которых три берутся со знаком «+» и три – со знаком «−». Правило вычисления слагаемых со знаком «+» схематически указано на рис. 1. Одно из слагаемых равно произведению элементов определителя, лежащих на главной диагонали. Каждое из двух других находится как произведение элементов, лежащих на параллели к этой диагонали, с добавлением третьего множителя из противоположного угла определителя. Слагаемые со знаком «−» получаются таким же образом, но относительно второй диагонали (рис. 2). Тогда

САМОСТОЯТЕЛЬНАЯ РАБОТА 2

ЗАДАНИЕ N 1 Тема: Определители второго порядка Если определитель второго порядка , то  …

ЗАДАНИЕ N 2 Тема: Определители второго порядка Если определитель второго порядка , то  …

ЗАДАНИЕ N 3 Тема: Определители второго порядка Если определитель второго порядка , то  …

ЗАДАНИЕ N 4 Тема: Определители третьего порядка Значение определителя третьего порядка можно вычислить, используя «правило треугольников», которое схематически указано на рисунках. Тогда определитель  равен …

ЗАДАНИЕ N 5

Тема: Определители третьего порядка Значение определителя третьего порядка можно вычислить, используя «правило треугольников», которое схематически указано на рисунках. Тогда определитель  равен …

ЗАДАНИЕ N 6 Тема: Определители третьего порядка Значение определителя третьего порядка можно вычислить, используя «правило треугольников», которое схематически указано на рисунках. Тогда определитель  равен …

ЗАДАНИЕ N 7 Тема: Определители третьего порядка Значение определителя третьего порядка можно вычислить, используя «правило треугольников», которое схематически указано на рисунках. Тогда определитель  равен …

ЗАДАНИЕ N 8

Тема: Определители третьего порядка Значение определителя третьего порядка можно вычислить, используя «правило треугольников», которое схематически указано на рисунках. Тогда определитель  равен …