- •5. Строение нуклениовых кислот.
- •6. Свойства и функции днк.
- •7. Особенности строения митохондриальной днк.
- •8. Типы рнк в клетках.
- •9. Биосинтез днк. Репликация.
- •10. Этапы репликации днк.
- •11. Основные пути реализации генетической информации в клетке.
- •12. Генетический код, свойства.
- •13.Этапы синтеза белка. Транскрипция. Фазы транскрипции.
- •14. Особенности транскрипции у эукариот.
- •15. Биосинтез белков. Трансляция. Фазы трансляции.
- •16. Строение и функции рибосом в процессе синтеза белка.
- •37. Понятие о фолдинге. Роль шаперонов в фолдинге.
- •18. Молекулярные механизмы регуляции экспрессии генов прокариот и эукариот. Теория оперона.
- •19. Функционирование оперонов.
- •20. Понятие о гене. Структурная организация генов прокариот и эукариот.
- •21. Классификация генов.
- •22. Генно – инженерные технологии. Применение в медицине.
- •25. Организация генома человека.
- •26. Особенности генетического аппарата вирусов.
- •27. Хромосомная организация наследственности.
- •28. Уровни структурной организации хромосом.
- •29. Понятие о кариотипе человека.
- •30. Нарушение генетического гомеостаза.
- •31. Мутации.
- •32. Мутагенез. Мутагенные факторы.
- •33. Патологические эффекты мутаций.
- •34, 35. Репарация. Типы репарации. Антимутационные барьеры клетки.
- •36. Мейоз. Рекомбинация генетического материала.
- •37. Гаметогенез. Овогенез. Сперматогенез.
- •39. Молекулярно – генетические методы исследования и их медицинское значение.
- •40. Методы днк-диагностики.
- •41. Основные результаты исследования генома человека. Карты хромосом человека.
- •42. Идентификация генов, участвующих в развитии болезней человека.
- •43. Трансгенные организмы, применение в фармации и медицине.
- •44. Молекулярная структура и функции основных компонентов клетки: оболочка, ядро, цитоплазма.
- •46. Значение мембран в жизнедеятельности клетки. Молекулярная структура и функции биологических мембран.
- •47. Типы и функции мембранных липидов и белков.
- •48. Транспорт через мембраны: активный, пассивный. Эндоцитоз, экзоцитоз.
- •49. Межклеточные контакты, типы контактов. Межклеточная адгезия.
- •50. Общая характеристика сигнальных молекул.
- •51. Основные этапы передачи сигнала в клетку. Особенности строения мембраносвязанных и внутриклеточных рецепторов.
- •52. Понятие о клеточном цикле. Фазы клеточного цикла. Митоз.
- •53. Регуляция клеточного цикла. Понятие о факторе стимуляции митоза. Роль циклинов и циклинзависимых киназ.
- •54. Понятие об апоптозе. Общая характеристика клеточных событий при апоптозе.
- •55. Теория старения. Канцерогенез.
- •56. Индивидуальное развитие организма. Онтогенез.
- •57. Генетические механизмы онтогенеза и их нарушение. Дифференциальная активность генов как основа морфогенеза.
- •58. Стволовые клетки, применение в медицине.
- •59. Механизмы возникновения врожденных пороков развития. Классификация.
- •60. Тератогенез. Тератогенные факторы.
- •61. Основные понятия генетики. Типы наследования признаков.
- •62. Наследственные болезни. Место в общей медицинской патологии.
- •63. Моногенные болезни с классическим типом наследования.
- •64. Моногенные наследственные болезни с неклассическим типом наследования. Сцепленные с полом. Однородительские дисомии. Митохондриальные болезни.
- •66. Генокопии и фенокопии.
- •67. Геномные синдромы половых хромосом и аутосом.
- •69. Генные наследственные болезни.
- •70. Методы лабораторной диагностики наследственных болезней.
- •71. Методы изучения наследственности человека.
- •72. Методы профилактики наследственных болезней.
- •73. Основные принципы лечения наследственных болезней. Генотерапия.
- •74. Медицинские аспекты популяционной генетики. Генетическая структура популяций человека.
- •75. Закон Харди – Вайнберга. Генетический полиморфизм.
- •76. Генетический груз в популяциях человека.
- •77. Популяционно генетические исследования. Геногеография наследственных болезней.
- •78. Основы экогенетики.
- •79. Основы фармакогенетики.
7. Особенности строения митохондриальной днк.
Митохондриальная ДНК (мтДНК) — ДНК, локализованная (в отличие от ядерной ДНК) в митохондриях, органоидах эукариотических клеток.
У большинства изученных организмов митохондрии содержат только кольцевые молекулы ДНК, у некоторых растений одновременно присутствуют и кольцевые, и линейные молекулы, а у ряда протистов (например, инфузорий) имеются только линейные молекулы. Митохондрии млекопитающих обычно содержат от двух до десяти идентичных копий кольцевых молекул ДНК. У растений каждая митохондрия содержит несколько молекул ДНК разного размера, которые способны к рекомбинации.У протистов из отряда кинетопластид (например, у трипаносом) в особом участке митохондрии (кинетопласте) содержится два типа молекул ДНК -- идентичные макси-кольца (20-50 штук) длиной около 21 т.п.о. и мини-кольца (20 000 — 55 000 штук, около 300 разновидностей, средняя длина около 1000 п.о.). Все кольца соединены в единую сеть (катенаны), которая разрушается и восстанавливается при каждом цикле репликации. Макси-кольца гомологичны митохондриальной ДНК других организмов. Каждое мини-кольцо содержит четыре сходных консервативных участка и четыре уникальных гипервариабельных участка. В мини-кольцах закодированы короткие молекулы направляющих РНК (guideRNA), которые осуществляют редактирование РНК, транскрибируемых с генов макси-колец. Митохондриальная ДНК (мтДНК) представляет собой геном клеточных органелл – митохондрий. Эндосимбиотическое происхождение этих органелл обуславливает полуавтономное существование генетической системы митохондрий. Так, синтез ДНК в митохондриях проходит независимо от синтеза ДНК ядерной, а наследование этой цитоплазматической генетической структуры – митохондриальной хромосомы – происходит в норме строго по материнской линии. Это дает авторам основание условно выделить совокупность митохондриальных генов и любых реплицирующихся фрагментов мтДНК в отдельный генетический ресурс популяции – митохондриальный генофонд. ДНК-содержащие структуры в митохондриях были выявлены в 60-х годах. За последние четверть века детально изучена структурная и функциональная организация митохондриального генома человека и многих видов животных. Митохондриальная хромосома представлена кольцевой двухцепочечной молекулой ДНК, которая присутствует в органелле в виде ковалентно замкнутой суперспирализованной формы, ассоциированой с внутренней мембраной митохондрии. Каждая органелла содержит от 1 до 8 молекул ДНК, что составляет 1000 – 8000 копий на клетку. Как правило, один организм обладает единой формой мтДНК, т.е. одним гаплотипом, унаследованным по материнской линии.
8. Типы рнк в клетках.
В клетках различают три типа РНК: 1)И-РНК(матричная или информационная РНК).
2)Р-РНК(рибосомная РНК).
3)Т-РНК(транспортная РНК)
Матричная РНК – синтезируется и транскрибируется на Днк и несет информацию для синтеза белка. Р-РНК и Т-РНК – синтезируются в ядрышках ядра. Ядрышко – это участок хромосом имеющий спутники. Ядрышковая ДНК содержит гены на которых синтезируются Р-РНК и Т-РНК. Р-РНК находятся в рибосомах(в малой и большой субъединице). Назначение: через малую субъединицу АК присоединяется к Т-РНК через АТФ. Отличие ДНК от РНК: 1)РНК состоит из одной цепи. 2)У РНК сахар – рибоза. 3)РНК короче чем ДНК. 4)Т-РНК имеет форму третичной структуры. Матричная (информационная) РНК — РНК, которая служит посредником при передаче информации, закодированной в ДНК к рибосомам, молекулярным машинам, синтезирующим белки живого организма. Кодирующая последовательность мРНК определяет последовательность аминокислот полипептидной цепи белка
Транспортные (тРНК) — малые, состоящие из приблизительно 80 нуклеотидов, молекулы с консервативной третичной структурой. Они переносят специфические аминокислоты в место синтеза пептидной связи в рибосоме. Каждая тРНК содержит участок для присоединения аминокислоты и антикодон для узнавания и присоединения к кодонам мРНК. Рибосомальные РНК (рРНК) — каталитическая составляющая рибосом. Эукариотические рибосомы содержат четыре типа молекул рРНК: 18S, 5.8S, 28S и 5S. Три из четырёх типов рРНК синтезируются в ядрышке. В цитоплазме рибосомальные РНК соединяются с рибосомальными белками и формируют нуклеопротеин, называемый рибосомой. Рибосома присоединяется к мРНК и синтезирует белок. рРНК составляет до 80 % РНК, обнаруживаемой в цитоплазме эукариотической клетки
