
- •5. Строение нуклениовых кислот.
- •6. Свойства и функции днк.
- •7. Особенности строения митохондриальной днк.
- •8. Типы рнк в клетках.
- •9. Биосинтез днк. Репликация.
- •10. Этапы репликации днк.
- •11. Основные пути реализации генетической информации в клетке.
- •12. Генетический код, свойства.
- •13.Этапы синтеза белка. Транскрипция. Фазы транскрипции.
- •14. Особенности транскрипции у эукариот.
- •15. Биосинтез белков. Трансляция. Фазы трансляции.
- •16. Строение и функции рибосом в процессе синтеза белка.
- •37. Понятие о фолдинге. Роль шаперонов в фолдинге.
- •18. Молекулярные механизмы регуляции экспрессии генов прокариот и эукариот. Теория оперона.
- •19. Функционирование оперонов.
- •20. Понятие о гене. Структурная организация генов прокариот и эукариот.
- •21. Классификация генов.
- •22. Генно – инженерные технологии. Применение в медицине.
- •25. Организация генома человека.
- •26. Особенности генетического аппарата вирусов.
- •27. Хромосомная организация наследственности.
- •28. Уровни структурной организации хромосом.
- •29. Понятие о кариотипе человека.
- •30. Нарушение генетического гомеостаза.
- •31. Мутации.
- •32. Мутагенез. Мутагенные факторы.
- •33. Патологические эффекты мутаций.
- •34, 35. Репарация. Типы репарации. Антимутационные барьеры клетки.
- •36. Мейоз. Рекомбинация генетического материала.
- •37. Гаметогенез. Овогенез. Сперматогенез.
- •39. Молекулярно – генетические методы исследования и их медицинское значение.
- •40. Методы днк-диагностики.
- •41. Основные результаты исследования генома человека. Карты хромосом человека.
- •42. Идентификация генов, участвующих в развитии болезней человека.
- •43. Трансгенные организмы, применение в фармации и медицине.
- •44. Молекулярная структура и функции основных компонентов клетки: оболочка, ядро, цитоплазма.
- •46. Значение мембран в жизнедеятельности клетки. Молекулярная структура и функции биологических мембран.
- •47. Типы и функции мембранных липидов и белков.
- •48. Транспорт через мембраны: активный, пассивный. Эндоцитоз, экзоцитоз.
- •49. Межклеточные контакты, типы контактов. Межклеточная адгезия.
- •50. Общая характеристика сигнальных молекул.
- •51. Основные этапы передачи сигнала в клетку. Особенности строения мембраносвязанных и внутриклеточных рецепторов.
- •52. Понятие о клеточном цикле. Фазы клеточного цикла. Митоз.
- •53. Регуляция клеточного цикла. Понятие о факторе стимуляции митоза. Роль циклинов и циклинзависимых киназ.
- •54. Понятие об апоптозе. Общая характеристика клеточных событий при апоптозе.
- •55. Теория старения. Канцерогенез.
- •56. Индивидуальное развитие организма. Онтогенез.
- •57. Генетические механизмы онтогенеза и их нарушение. Дифференциальная активность генов как основа морфогенеза.
- •58. Стволовые клетки, применение в медицине.
- •59. Механизмы возникновения врожденных пороков развития. Классификация.
- •60. Тератогенез. Тератогенные факторы.
- •61. Основные понятия генетики. Типы наследования признаков.
- •62. Наследственные болезни. Место в общей медицинской патологии.
- •63. Моногенные болезни с классическим типом наследования.
- •64. Моногенные наследственные болезни с неклассическим типом наследования. Сцепленные с полом. Однородительские дисомии. Митохондриальные болезни.
- •66. Генокопии и фенокопии.
- •67. Геномные синдромы половых хромосом и аутосом.
- •69. Генные наследственные болезни.
- •70. Методы лабораторной диагностики наследственных болезней.
- •71. Методы изучения наследственности человека.
- •72. Методы профилактики наследственных болезней.
- •73. Основные принципы лечения наследственных болезней. Генотерапия.
- •74. Медицинские аспекты популяционной генетики. Генетическая структура популяций человека.
- •75. Закон Харди – Вайнберга. Генетический полиморфизм.
- •76. Генетический груз в популяциях человека.
- •77. Популяционно генетические исследования. Геногеография наследственных болезней.
- •78. Основы экогенетики.
- •79. Основы фармакогенетики.
25. Организация генома человека.
Геном человека — это геном биологического вида Homo sapiens. В нормальной ситуации в большинстве клеток человека должно присутствовать 46 хромосом: 44 из них не зависят от пола (аутосомные хромосомы), а две — X-хромосома и Y-хромосома — определяют пол (XY — у мужчин или ХХ — у женщин). Хромосомы в общей сложности содержат приблизительно 3 миллиарда пар оснований нуклеотидов ДНК, в которых по оценкам содержится 20000-25000 генов. [1] В ходе выполнения проекта «Геном человека» содержимое хромосом находящихся в стадии интерфаза в клеточном ядре (вещество эухроматин) было выписано в виде последовательности символов. В настоящее время эта последовательность активно используется по всему миру в биомедицине. В ходе исследований выяснилось, что человеческий геном содержит значительно меньшее число генов, нежели ожидалось в начале проекта. Только для 1.5 % всего материала удалось выяснить функцию, остальная часть составляет так называемую мусорную ДНК. [2] В эти 1,5 % входят собственно сами гены, которые кодируют РНК и белки, а также их регуляторные последовательности, интроны и, возможно, псевдогены).
Геном человека состоит из фракций ДНК, имеющих различную структурно-функциональную организацию. 1)ДНК с уникальными последовательностями нуклеотидов. 2)ДНК с умеренно повторяющимися последовательностями нуклеотидов. 3)ДНК с высокоповторяющимися последовательностями нуклеотидов.
26. Особенности генетического аппарата вирусов.
У некоторых ДНК-содержащих вирусов сам цикл репродукции в клетке не связан с немедленной репликацией вирусной ДНК; вместо этого вирусная ДНК встраивается (интегрируется) в ДНК клетки-хозяина. На этой стадии вирус как единое структурное образование исчезает: его геном становится частью генетического аппарата клетки и даже реплицируется в составе клеточной ДНК во время деления клетки. Однако впоследствии, иногда через много лет, вирус может появиться вновь – запускается механизм синтеза вирусных белков, которые, объединяясь с вирусной ДНК, формируют новые вирионы. У некоторых РНК-содержащих вирусов геном (РНК) может непосредственно выполнять роль мРНК. Однако эта особенность характерна только для вирусов с «+» нитью РНК (т.е. с РНК, имеющей положительную полярность). У вирусов с «-» нитью РНК последняя должна сначала «переписаться» в «+» нить; только после этого начинается синтез вирусных белков и происходит репликация вируса. Так называемые ретровирусы содержат в качестве генома РНК и имеют необычный способ транскрипции генетического материала: вместо транскрипции ДНК в РНК, как это происходит в клетке и характерно для ДНК-содержащих вирусов, их РНК транскрибируется в ДНК. Двухцепочечная ДНК вируса затем встраивается в хромосомную ДНК клетки. На матрице такой вирусной ДНК синтезируется новая вирусная РНК, которая, как и другие, определяет синтез вирусных белков.
Если вирусы действительно являются мобильными генетическими элементами, получившими «автономию» (независимость) от генетического аппарата их хозяев (разных типов клеток), то разные группы вирусов (с разным геномом, строением и репликацией) должны были возникнуть независимо друг от друга. Поэтому построить для всех вирусов единую родословную, связывающую их на основе эволюционных взаимоотношений, невозможно. Принципы «естественной» классификации, используемые в систематике животных, не подходят для вирусов.
Генетический аппарат вирусов. В природе, носителем генетической информации являются нуклеиновые кислоты. Известно два основных типа нуклеиновых кислот: ДНК (дезоксирибонуклеиновая кислота) и РНК (рибонуклеиновая кислота). У большинства живых организмов нуклеиновые кислоты содержатся в ядре и цитоплазме (клеточном соке). Вирусы, хоть и являются неклеточными структурами, но также содержат нуклеиновые кислоты. По типу содержащейся нуклеиновой кислоты вирусы разделяют на два класса: ДНК-содержащие и РНК-содержащие. К ДНК-содержащим вирусам относятся вирусы гепатита В, вирус герпеса и др. РНК-содержащие вирусы представлены вирусом гриппа и парагриппа, вирусом иммунодефицита человека (ВИЧ), вирусом гепатита А и пр. У вирусов, равно как и у прочих живых организмов, нуклеиновые кислоты играют роль носителя генетической информации. Информация о структуре различных белков (генетическая информация) закодирована в структуре нуклеиновых кислот в виде специфических последовательностей нуклеотидов (составных частей ДНК и РНК). Гены вирусных нуклеиновых кислот кодируют разнообразные ферменты и структурные белки. ДНК и РНК вирусов являются материальным субстратом наследственности и изменчивости вирусов – двух основных составляющих в эволюции вирусов в частности и всей живой природы в целом.