
- •1 Критические угловые скорости роторов
- •2 Влияние упругости опор на критические скорости
- •12 Определение суммарных напряжений в рабочих лопатках гтд.
- •14 Расчет температурных напряжений
- •15 Изгибные формы колебаний
- •17 Технические требования, предъявляемые к ад.
- •18 Рабочие лопатки компрессора.
- •19 Роторы осевых компрессоров
- •20 Опоры роторов
- •21 Система смазки гтд
- •22 Основные требования к кс
- •23 Пусковые системы гтд
- •24 Лопатки рабочие и роторы турбины
- •25 Назначение ву
- •26 Конструктивно-схемные решения сопловых аппаратов
- •27 Охлаждение лопаток и дисков турбин.
- •30 Силовые схемы роторов и корпусов гтд Силовые схемы роторов
- •Силовые схемы корпусов
- •31 Материалы камер сгорания и выходных устройств
- •33 Материалы деталей компрессоров и турбин Компрессор
- •Турбина
- •34 Уплотнения масляных полостей опор роторов
- •35 Основные направления развития авиа гтд. Двигатели первого поколения
- •Двигатели второго поколения
- •Двигатели третьего поколения
- •Двигатели четвертого поколения
- •36 Конструктивно-схемные решения охлаждаемых рабочих лопаток
- •37 Соединения рабочих лопаток с дисками.
- •38 Газовые турбины: конструктивные параметры и компоновки.
- •39 Воздушные уплотнения.
39 Воздушные уплотнения.
На КПД компрессора существенным образом влияет перетекание воздуха между ступенями из области с более высоким давлением в область с меньшим давлением и из-за последней ступени. Для уменьшения влияния этого явления на характеристики компрессора применяют лабиринтные уплотнения. Работа лабиринтного уплотнения основана на создании большого гидравлического сопротивления на пути перетекающего воздуха — многократного дросселирования воздуха при течении его через каналы с резко меняющимися проходными сечениями (рис. 3.57). Однако полностью изолировать области с разными давлениями с помощью лабиринтного уплотнения невозможно. Оно лишь уменьшает расход воздуха при перетекании из области с высоким давлением в область с низким давлением до допустимых значений.
Рис. 3.57. Схемы лабиринтных уплотнений.
Эффективность лабиринтного уплотнения зависит от формы и наклона гребешков, их числа z, перепада давлений, уплотняемых полостей, величины зазора δ (см. рис. 3.57) и определяется расходом перетекающего воздуха
С уменьшением зазора δ и увеличением числа гребешков эффективность лабиринтного уплотнения возрастает. Для снижения количества перетекающего между ступенями воздуха до приемлемой величины достаточно 3 ... 5 гребешков. При больших перепадах (за последней ступенью компрессора) их число должно быть существенно увеличено. Но чтобы не увеличивать длину уплотнения, лабиринты можно устанавливать в два и три яруса. Эффективность уплотнения существенно повышается при использовании гребешков с наклоном. Самым эффективным является уплотнение с гребешками переменной высоты и соответственно ступенчатой втулки (см. рис. 3.57, № 4). Однако это уплотнение требует разъема неподвижной втулки для обеспечения сборки. На величину расхода воздуха через уплотнение существенно влияет форма кромок гребешков. Поскольку даже небольшое скругление вызывает заметное снижение эффективности уплотнения, то их притупление недопустимо, что и должно указываться в рабочих чертежах.
Для повышения эффективности уплотнения зазор δ должен иметь минимально возможную величину. Задевание гребешков о неподвижное кольцо вызывает их большой износ, нагрев и повреждение. Для обеспечения работоспособности уплотнения при минимальном и даже нулевом зазорах гладкое кольцо должно иметь специальное мягкое, легко прирабатываемое покрытие — графоталькированное или графитоалюминиевое. При мягком покрытии гребешки при касании могут прорезать в нем канавки, не приводя к стопорению ротора.
40 Соединения дисков и валов.
Конструкция соединения обеспечивает: 1) надежную передачу в стыках деталей ротора всех действующих нагрузок; 2) обеспечить достаточную жесткость соединения без раскрытия стыков; 3) надежную взаимную соосность стыкуемых деталей; 4) фиксацию от смещений для сохранения допустимого значения дисбаланса как в работе, так и при переборках; 5) минимальную передачу тепла от нагретых деталей к подшипникам и др.
Все типы используемых соединений делятся на 2 группы: разборные соединения и неразборные соединения, что в основном определяется требованиями сборки и разборки узла турбины при ее конкретной компоновочной схеме.
К числу разъемных соединений относятся широко распространенные фланцевые соединения с использованием торцевых шлиц (рис. 4.43, а), призонных болтов (рис. 4.43, в), призонных втулок (рис. 4.43, г) при стягивании деталей болтами и фланцевых соединений с прилежными штифтами (рис 4.43, б) и соединений по эвольвентным шлицам (рис. 4.43, в).
Рис. 4.42. Конструктивные варианты соединения элементов ротора по цилиндрическому пояску с использованием радиальных штифтов: а — по одной посадочной поверхности; б — вильчатый вариант; в — разборный вариант; г — соединение из трех деталей в одном узле с отклонением оси штифта от радиального.
К числу неразъемных соединений относится: 1) соединение с использованием радиально расположенных штифтов (рис. 4.42). 2) неразъемные роторы, в которых уменьшается количество деталей, снижается стоимость изготовления и масса ротора в результате использования современных видов сварки, проставочных колец, валов и цапф, обеспечивающих высокое сопротивление усталости исходного материала в зоне соединения. Это достигается при таких видах сварки, как вакуумная, инерционная (сварка трением), электронно-лучевая и другие виды, обеспечивающие малую зону расправления в месте стыка сварки. Такой ротор имеет повышенную изгибную жесткость и лучше сохраняет допустимый дисбаланс из-за отсутствия сдвигов и смятия, возможных при болтовых соединениях.
При проектировании любого из рассмотренных типов соединений необходимо знать значения сил и моментов, действующих в месте стыка, а именно:
— крутящий момент Мкр, даН·см;
— осевое газодинамическое усилие Рa, даН;
— изгибающие моменты Ми (Рj) и Ми (Мг), даН·см, от инерционных сил Рj и гироскопических моментов Мг (даН·см) при криволинейном полете либо плоском штопоре;
— величину термической силы Рt (даН), возникающей в результате различных температур нагрева и различия коэффициентов линейного расширения стыкуемых деталей.