
- •1. Что изучает наука биология, кто и когда ввел этот термин. Задачи, решаемые современной биологией. Определение жизни ф.Энгельса, современное определение жизни
- •2. Сущность жизни, отличительные особенности живой материи
- •3. Современная классификация живых организмов
- •4. Теории происхождения жизни, креационизм, абиогенез и биогенез (опыты Ван Гельмонта, ф. Реди, л. Спалланцани и л.Пастера), теории панспермии стационарного состояния.
- •5. Теория биохимической эволюции (закономерность возникновения жизни, атмосфера первобытной Земли, опыты с. Миллера, коацерватная гипотеза а.И. Опарина).
- •6. Эволюция первичных одноклеточных организмов, возникновение фотосинтеза и его последствия.
- •7. Основные уровни организации жизни.
- •8. Углеводы (общая формула, основные функции). Моно- ди- и полисахариды, их значение
- •9. Липиды (общая формула, основные липиды, их значение). Витамины (определение, функции, классификация витаминов).
- •10. Аминокислоты (общая формула, образование дипептида). Белки. Первичная, вторичная, третичная и четвертичная структуры белковых молекул.
- •11. Функции белков в клетке. Ферменты, их основные свойства.
- •12. Строение нуклеиновых кислот (днк и рнк). Модель днк Уотсона и Крика. Репликация нуклеиновых кислот.
- •13. Виды рнк (рибосомальная, информационная и транспортная) и ее функции в клетке.
- •14. Биосинтез белков. Механизм транскрипции и трансляции.
- •15. Классификация организмов по типу питания: фототрофы, хемотрофы и гетеротрофы.
- •16. Строение и роль атф. Энергетический обмен.
- •17. Пластический обмен (фотосинтез и хемосинтез).
- •18. Клеточная теория строения организмов (ее авторы и основные положения)
- •19. Строение и функции клеточной мембраны эукариотических клеток.
- •20. Основные органоиды эукариотичекой клетки (эндоплазматическая сеть, рибосомы, митохондрии, аппарат Гольджи, лизосомы, клеточный центр, жгутики и реснички).
- •21. Строение и функции клеточного ядра.
- •22. Сравнительная характеристика растительной и животной клетки. Специфические структуры растительных клеток (клеточная стенка, вакуоль, пластиды), их строение и свойства.
- •23. Строение прокариотической клетки, ее отличие от клеток эукариот.
- •24. Размножение как свойство живых организмов, виды бесполого и полового размножения.
- •25. Клеточный цикл: интерфаза, стадии митоза, его биологическое значение.
- •26. Половое размножение организмов: стадии мейоза, его биологическое значение. Строение сперматозоида и яйцеклетки, оплодотворение.
- •27. Определение онтогенеза. Эмбриональный период развития (дробление, гаструляция, первичный органогенез). Биогенетический закон.
- •28. Постэмбриональный период развития беспозвоночных (прямое и непрямое развитие, значение метаморфоза) и позвоночных (дорепродуктивный, репродуктивный и пострепродуктивный периоды).
- •29. Предмет генетики. Законы Менделя, анализирующее скрещивание.
- •30. Взаимодействие аллельных генов.
- •31. Наследование, сцепленное с полом.
- •32. Наследственная (классификация мутаций, генный, хромосомный и геномные мутации) и ненаследственные (фенотипическая) изменчивость.
- •33. Экологические факторы: абиотические, биотические и антропогенные.
- •34. Лимитирующие факторы (определение, пределы выживаемости, экологическая валентность эври- и стенобитные виды).
- •35. Определение популяции, основные характеристики популяций (численность, рождаемость, смертность).
- •36. Структура популяции: половая, возрастная, пространственная (оседлый и кочевой образ жизни) и этологическая (одиночный, семейный, колониальный, стайный и стадный образ жизни).
- •37. Определение биоценоза. Межвидовые взаимодействия (взаимополезные, полезно-нейтральные, полезновредные, взаимовредные, вредно-нейтральные)
- •38. Определение экосистемы, соотношение понятий экосистема и биогеоценоз. Структура экосистемы.
- •39. Цепи питания (пастбищные и детридные), экологические пирамиды (пирамиды энергии, численности и биомассы).
- •40. Биосфера и ее границы, виды вещества в биосфере (живое, косное, биокосное и биогенное вещество).
- •41. Функции живого вещества в биосфере (энергетическая, газовая, концентрационная, окислительно-восстановительная). Ноосфера.
- •42. Биологическое разнообразие.
- •43. Сохранение разнообразия (сохранение видов, категории сохранения видов по мсоп, защита и сохранение сообществ), критерии для определения приоритета сохранения вида или сообщества.
- •44. История представлений о развитии жизни на Земле («лестница существ» Бонне, теория эволюции ж.Б.Ламарка).
- •45. Учение ч.Дарвина об искусственном отборе (сознательный и бессознательный отбор).
- •46. Учение ч.Дарвина о естественном отборе (наследственная изменчивость, борьба за существование и естественный отбор).
- •47.Микроэволюция: генетические процессы в популяциях (мутации, популяционные волны, изоляция), формы естественного отбора.
- •48. Адаптация как результат естественного отбора.
- •49. Аллопатрическое и симпатрическое видообразования.
- •50. Макроэволюция. Биологический прогресс и биологический регресс. Направления биологической эволюции (аллогенез, арогенез и катагенез).
- •51. Антропогенез: классификация человека и его происхождение.
41. Функции живого вещества в биосфере (энергетическая, газовая, концентрационная, окислительно-восстановительная). Ноосфера.
Глобальными биогеохимическими функциями живого вещества являются энергетическая, газовая, концентрационная, окислительно-восстановительная и биохимическая.
Энергетическая функция заключается в усвоении живым веществом преимущественно солнечной энергии и передаче ее по трофическим цепям. В основе этой функции лежит фотосинтетическая деятельность зеленых растений, образующих 98% всей первичной продукции планеты, что составляет около 150— 200 млрд. т сухого органического вещества в год.
Газовая функция осуществляется зелеными растениями, которые в процессе фотосинтеза выделяют кислород, растениями и животными, выделяющими при дыхании углекислый газ, а также многими бактериями, восстанавливающими азот, сероводород и др. Благодаря газовой функции сформировался современный состав атмосферы, значительно отличающийся от такового в до-биосферный период.
Концентрационная функция проявляется в способности живых организмов накапливать разные химические элементы, в том числе микроэлементы, из внешней среды (почвы, воды, атмосферы). Некоторые виды являются специфическими концентраторами химических элементов в количествах, в десятки и даже тысячи раз превышающих их содержание в среде. Так, бурые водоросли концентрируют иод, диатомовые водоросли и злаки — кремний, фиалки -— цинк, моллюски и ракообразные — медь, и т. п. Следствием концентрационной функции живых организмов являются геохимические аномалии многих участков земной поверхности, залежи известняка, локальные скопления некоторых химических элементов.
Окислительно-восстановительная функция выражается в химических превращениях веществ в процессе жизнедеятельности организмов. В почве, водной и воздушной среде образуются соли, окислы, новые вещества как результат окислительно-восстановительных реакций. С деятельностью микроорганизмов связано формирование железных и марганцевых руд, известняков и т. п.
Биохимическая функция осуществляется в процессе обмена веществ в живых организмах (питания, дыхания, выделения) и разрушения отмерших организмов и продуктов их жизнедеятельности до простых неорганических веществ. Все это приводит к круговороту химических элементов в природе, их биогенной миграции.
В 1944 Вернадский ввёл понятие – ноосфера, имея в виду новое состояние биосферы, при котором определяющим фактором её развития становится разум человека. Это положение приобретает особую актуальность в связи со всё возрастающей интенсивностью хозяйственной деятельности человека, которая в 20 в. приобрела глобальный характер и сопровождается загрязнением воздуха, воды, эрозией почв, а также другими отрицательными для биосферы последствиями.
42. Биологическое разнообразие.
БИОЛОГИЧЕСКОЕ РАЗНООБРАЗИЕ (биоразнообразие), показатель, характеризующийся числом видов живых организмов, обитающих на единице площади суши или объёма водоёма. В широком смысле этот термин охватывает множество биологических показателей и соответствует понятию «жизнь на Земле». Явление удивительного разнообразия организмов обусловлено способностью макромолекул, прежде всего нуклеиновых кислот, к спонтанному изменению структуры, что приводит к наследственной изменчивости. На этой основе биологическое разнообразие создаётся на молекулярном (возникновение генетических вариаций), популяционном (действие естественного отбора) и видовом (видообразование) уровнях с последующим увеличением биоразнообразия на биоценотическом и биосферном уровнях. Обычно биоразнообразие рассматривают на видовом уровне, для чего разработаны специальные методы измерения, в т. ч. в единицах информации. Практическое применение показатели биоразнообразия находят при контроле за процессами, протекающими в живой природе (мониторинг), и при решении вопросов её охраны, т. к. богатые видами сообщества устойчивее бедных, а антропогенное воздействие (см. Антропогенные факторы) ведёт к снижению видового богатства и изменению его характера. Описано 1,75 млн. видов живых организмов, но, по мнению учёных-систематиков, их реальное число составляет не менее 10–35 млн. Особую ценность как центры видового разнообразия на Земле представляют влажные тропические леса – основные хранители генофонда земной флоры и фауны.