
- •1. Методи дослідження і моделювання соціально-економічних систем
- •1.1. Економічна система як об’єкт моделювання
- •1.2. Етапи економіко-математичного моделювання
- •1.3. Класифікація економіко-математичних методів і моделей
- •2. Особливості економетричних моделей
- •2.1. Загальне поняття економетричної моделі
- •2.2. Формування сукупності спостережень
- •2.3. Поняття однорідності спостережень
- •2.4. Точність вихідних даних
- •2.5. Вибір змінних і структура зв’язків
- •2.6. Основні складові частини класичної моделі нормальної регресії
- •3. Парна лінійна регресія
- •3.1. Суть задачі побудови парної лінійної регресії
- •3.2. Передумови застосування методу найменших квадратів (1мнк)
- •3.3. Мнк для парної лінійної регресії
- •3.4. Поняття про ступені вільності
- •Оцінок параметрів та , знайдених за мнк
- •3.6. Інтервали довіри для параметрів та
- •3.7. Оцінка щільності та перевірка істотності кореляційного зв’язку
- •3.8. Коефіцієнт детермінації
- •3.9. Перевірка парної лінійної регресії на адекватність за –критерієм Фішера
- •3.10. Прогнозування за моделями парної лінійної регресії
- •Приклад 1. Лінійна парна регресія
- •4. Нелінійні моделі та їх лінеаризація
- •Приклад 2. Нелінійна парна регресія
- •5. Багатофакторна лінійна регресія
- •5.1. Класична лінійна багатофакторна модель
- •5.2. Основні припущення в багатофакторному регресійному аналізі
- •5.3. Етапи побудови багатофакторної регресійної моделі
- •5.4. Розрахунок невідомих параметрів багатофакторної регресії за мнк
- •5.5. Перевірка гіпотез щодо параметрів багатофакторної регресії в матричному вигляді
- •5.6. Знаходження інтервалів довіри для параметрів
- •5.7. Побудова економетричної моделі на основі покрокової регресії
- •5.8. Коефіцієнти множинної кореляції та детермінації
- •5.10. Коефіцієнт детермінації та оцінений коефіцієнт детермінації
- •5.10. Перевірка моделі на адекватність за f - критерієм Фішера
- •5.11. Прогнозування за багатофакторною регресійною моделлю
- •Приклад 3. Багатофакторна лінійна регресія
- •Приклад 4. Побудова економетричної моделі на основі покрокової регресії
- •Приклад 5. Оцінка коефіцієнтів детермінації
- •Приклад 6. Перевірка адекватності моделі
- •6. Мультиколінеарність
- •6.1. Поняття мультиколінеaрності
- •6.2. Ознаки мультиколінеарності
- •6.3. Алгоритм Фаррара – Глобера
- •7. Автокореляція
- •7.1. Поняття автокореляції
- •7.2. Наслідки автокореляції залишків
- •7.3. Перевірка наявності автокореляції Критерій Дарбіна – Уотсона
- •7.4. Критерій фон Неймана
- •7.5. Нециклічний коефіцієнт автокореляції
- •7.6. Циклічний коефіцієнт автокореляції
- •9. Гетероскедастичність
- •9.1. Поняття гетероскедастичності
- •9.2. Перевірка гетероскедастичності на основі критерію
- •9.3. Параметричний тест Гольдфельда-Квандта
- •Приклад 8. Перевірка наявності гетероскедастичності
- •10. Економетричні симультативні моделі
- •10.1. Системи одночасних структурних рівнянь
- •10.2. Загальні поняття про методи оцінювання
- •10.3. Попередні відомості про структурні моделі. Ілюстративний приклад
- •10.4. Структурні моделі скороченої форми
- •10.5. Проблема ототожнення в симультативних моделях
- •10.6. Основні правила ототожнення
- •10.7. Рангова умова ототожнення
- •10.8. Методи оцінювання невідомих параметрів симультативних моделей
- •Приклад 9. Побудова системи одночасних структурних рівнянь
- •11. Економетричний аналіз виробничих функцій
- •11.1. Гранично агреговані моделі відтворювальних процесів
- •11.2. Різновиди виробничих функцій
- •11.3. Виробнича функція Кобба-Дугласа
- •Приклад 10. Виробнича функція Кобба-Дугласа
- •12. Методи і моделі аналізу динаміки економічних процесів
- •12.1. Поняття економічних рядів динаміки
- •12.2. Попередній аналіз і згладжування часових рядів економічних показників
- •12.3. Згладжування тимчасових рядів економічних показників
- •12.4. Тренд-сезонні економічні процеси і їх аналіз
- •12.5. Ітераційні методи фільтрації
- •Приклад 11. Метод Четверикова
- •12.6. Статистичні методи оцінки рівня сезонності
- •Приклад 12. Оцінка рівня сезонності часового ряду
- •13. Моделі прогнозування економічних процесів
- •13. 1. Метод екстраполяції на основі кривих зростання економічної динаміки
- •13.2. Методи оцінки параметрів кривих зростання
- •13.3. Оцінка адекватності і точності трендових моделей
- •Приклад 13. Ооцінка адекватності і точності трендової моделі
- •13.4. Прогнозування економічної динаміки на основі трендових моделей
- •Приклад 14. Оцінка прогнозу на основі трендової моделі
- •Література
- •Додатки Додаток а. Процентилі t-розподілу
- •Додаток в. F-розподіл, 5%-ні точки (f0,95)
- •Додаток d. Критерій Дарбіна - Уотсона (d). Значення dL і dU при 1%-му рівні значущості
- •Додаток e. Критичні значення для відношення фон Неймана
3.8. Коефіцієнт детермінації
Вимірювання
щільності нелінійного зв’язку ґрунтується
на співвідношенні варіацій теоретичних
та емпіричних значень результативної
ознаки. Відхилення індивідуального
значення ознаки
від середньої
можна розкласти на дві складові. У
регресійному аналізі це відхилення від
лінії регресії
та
відхилення лінії регресії від середньої
.
Відхилення
є
наслідком дії фактора
,
відхилення
–
наслідком дії інших факторів. Взаємозв’язок
факторної та залишкової варіації
описується правилом декомпозиції
варіацій: загальну дисперсію результативної
ознаки можна розкласти на дві частини
- дисперсію, що пояснює регресію, та
дисперсію помилок:
де
–
загальна дисперсія;
– факторна дисперсія;
– залишкова дисперсія, або дисперсія
помилок.
Очевидно, значення факторної дисперсії буде тим більшим, чим сильніший вплив фактора та .
Поділивши обидві частини на загальну дисперсію, отримаємо:
Перша частина цього виразу являє собою частину дисперсії, яку не можна пояснити через регресійний зв’язок, друга - частину дисперсії, яку можна пояснити, виходячи з регресії. Вона називається коефіцієнтом детермінації і використовується як критерій адекватності моделі, бо є мірою пояснювальної сили незалежної змінної:
Для
лінійного зв’язку:
.
Якщо
значення коефіцієнта детермінації
близьке до одиниці, то можна вважати,
що побудована модель адекватна (
).
Варіація
на
залежить від варіації
,
і на
від варіації інших факторів, які не
враховуються в моделі.
3.9. Перевірка парної лінійної регресії на адекватність за –критерієм Фішера
При аналізі лінійної моделі на адекватність необхідно детально проаналізувати похибку спостереження:
– якщо похибка двічі змінює свій знак, то лінійна модель не адекватна;
– якщо похибка від виміру до виміру систематично зростає або спадає, то лінійна модель також є не адекватною.
Адекватність простої лінійної регресійної моделі можна перевірити за допомогою коефіцієнта детермінації. Якщо його значення близьке до одиниці, то можна вважати, що модель адекватна. Якщо його значення близьке до нуля, то модель неадекватна, тобто немає лінійного зв’язку залежною та незалежною змінними. Але який висновок можна зробити, якщо значення коефіцієнта кореляції має не явно виражене граничне значення, наприклад, 0,5; 0,45; 0,44 і т.ін.? Зрозуміло, що в таких випадках важко зробити однозначний висновок про наявність зв’язку, тобто про адекватність моделі. Нам потрібен інший критерій, який би однозначно давав відповідь на запитання про адекватність побудованої моделі. Найбільш поширеним із таких критеріїв є критерій Фішера.
Перевірка моделі на адекватність за –критерієм Фішера складається з таких етапів:
1. Розраховуємо величину –критерію:
В
цій формулі
– кількість спостережень та кількість
параметрів відповідно.
2.
Задаємо рівень значимості, наприклад,
.
Тобто, ми вважатимемо, що можлива помилка
для нас становить 0,05, це означає, що ми
можемо помилитися не більш, ніж у 5%
випадків, а в 95% випадків наші висновки
будуть правильними.
3.
На цьому етапі за статистичними таблицями
–розподілу
Фішера з
ступенями вільності та рівнем значимості
знаходимо критичне значення
.
Якщо
<
,
то зі ймовірністю 0,95 ми стверджуємо, що
побудована нами модель є адекватною.
Або навпаки, якщо
>
.