
- •Интеллектуальные средства измерений
- •Часть I Нейрокомпьютерные сети
- •1 Теоретические основы нейронных сетей
- •1.1 Обзор основных свойств и функций нейронных сетей
- •1.1.1 Свойства искусственных нейронных сетей
- •1.1.2 Обучение нейронных сетей
- •1.1.3 Обобщение
- •1.1.4 Абстрагирование
- •1.1.5 Применимость
- •1.2 Терминология, обозначения и схематическое изображение искусственных нейронных сетей
- •1.3 Структура нейроных сетей
- •1.4 Обучение искусственных нейронных сетей
- •1.4.1 Обзор основных свойств обучения
- •1.4.1.1 Цель обучения
- •1.4.1.2 Обучение с учителем
- •1.4.1.3 Обучение без учителя
- •1.4.1.4 Алгоритмы обучения
- •1.4.2 Процедура обратного распространения
- •1.4.2.1 Сетевые конфигурации
- •1.4.2.2 Многослойная сеть
- •1.4.2.3 Проход вперед
- •1.4.2.4 Обратный проход. Подстройка весов выходного слоя
- •1.4.2.5 Подстройка весов скрытого слоя
- •1.4.2.6 Добавление нейронного смещения
- •1.4.2.7 Импульс
- •1.4.2.8 Паралич сети
- •1.4.2.9 Локальные минимумы
- •1.4.2.10 Размер шага
- •1.4.2.11 Временная неустойчивость
- •1.4.3 Сети встречного распространения
- •1.4.3.1 Структура сети
- •1.4.3.2 Нормальное функционирование
- •1.4.3.2.1 Слои Кохоненна
- •1.4.3.2.2 Слой Гроссберга
- •1.4.3.3 Обучение слоя Кохонена
- •1.4.3.3.1 Предварительная обработка входных векторов
- •1.4.3.3.2 Выбор начальных значений весовых векторов
- •1.4.3.3.3 Режим интерполяции
- •1.4.3.3.4 Статистические свойства обученной сети
- •1.4.3.3 Обучение слоя Гроссберга
- •1.4.3.4 Сеть встречного распространения полностью
- •1.4.4 Стохастические методы
- •1.4.4.1 Использование обучения
- •1.4.4.2 Больцмановское обучение
- •1.4.5 Сети Хопфилда
- •1.4.5.1 Бинарные системы
- •1.4.5.2 Устойчивость
- •1.4.5.3 Ассоциативная память
- •1.4.5.4 Обобщенные сети
1.4 Обучение искусственных нейронных сетей
Среди всех интересных свойств искусственных нейронных сетей ни одно не захватывает так воображения, как их способность к обучению. Их обучение до такой степени напоминает процесс интеллектуального развития человеческой личности что может показаться, что достигнуто глубокое понимание этого процесса. Но, скорее всего, утверждать это ещё пока рано. Возможности обучения искусственных нейронных сетей ограниченны, и нужно решить много сложных задач, чтобы создать условия для устойчивого обучения сети. Ещё в очень многом разработчик вынужден в процессе обучения использовать свой интеллект, «подстраховывая» искусственную нейросеть.
1.4.1 Обзор основных свойств обучения
1.4.1.1 Цель обучения
Сеть обучается, чтобы для некоторого множества входов давать желаемое (или, по крайней мере, сообразное с ним) множество выходов. Каждое такое входное (или выходное) множество рассматривается как вектор. Обучение осуществляется путем последовательного предъявления входных векторов с одновременной подстройкой весов в соответствии с определенной процедурой. В процессе обучения веса сети постепенно становятся такими, чтобы каждый входной вектор вырабатывал выходной вектор.
1.4.1.2 Обучение с учителем
Различают алгоритмы обучения с учителем и без учителя. Обучение с учителем предполагает, что для каждого входного вектора существует целевой вектор, представляющий собой требуемый выход. Вместе они называются обучающей парой. Обычно сеть обучается на некотором числе таких обучающих пар. Предъявляется выходной вектор, вычисляется выход сети и сравнивается с соответствующим целевым вектором, разность (ошибка) с помощью обратной связи подается в сеть и веса изменяются в соответствии с алгоритмом, стремящимся минимизировать ошибку. Векторы обучающего множества предъявляются последовательно, вычисляются ошибки и веса подстраиваются для каждого вектора до тех пор, пока ошибка по всему обучающему массиву не достигнет приемлемо низкого уровня.
1.4.1.3 Обучение без учителя
Несмотря на многочисленные прикладные достижения, обучение с учителем критиковалось за свою биологическую неправдоподобность. Трудно вообразить обучающий механизм в мозге, который бы сравнивал желаемые и действительные значения выходов, выполняя коррекцию с помощью обратной связи. Если допустить подобный механизм в мозге, то откуда тогда возникают желаемые выходы? Обучение без учителя является намного более правдоподобной моделью обучения в биологической системе. Развитая Кохоненом [4] и многими другими, она не нуждается в целевом векторе для выходов и, следовательно, не требует сравнения с предопределенными идеальными ответами. Обучающее множество состоит лишь из входных векторов. Обучающий алгоритм подстраивает веса сети так, чтобы получались согласованные выходные векторы, т.е. чтобы предъявление достаточно близких входных векторов давало одинаковые выходы. Процесс обучения, следовательно, выделяет статистические свойства обучающего множества и группирует сходные векторы в классы. Предъявление на вход вектора из данного класса даст определенный выходной вектор, но до обучения невозможно предсказать, какой выход будет производиться данным классом входных векторов. Следовательно, выходы подобной сети должны трансформироваться в некоторую понятную форму, обусловленную процессом обучения. Это не является серьезной проблемой. Обычно не сложно идентифицировать связь между входом и выходом, установленную сетью.