
- •Содержание
- •1 Лекция 3
- •2 Лекция Архитектура и алгоритм работы современного компьютера 4
- •3 История развития и архитектура современных микропроцессоров 15
- •4 Материнские платы. Чипсет и его назначение 56
- •5 Системы охлаждения эвм 61
- •1Лекция
- •2 Лекция Архитектура и алгоритм работы современного компьютера
- •2.1Эволюция архитектуры компьютера
- •2.1.1Гарвардская архитектура
- •2.1.2Фон-неймановская архитектура (первое поколение эвм)
- •2.1.3Архитектура компьютеров 2 поколения
- •2.1.4Архитектура компьютеров 3-го поколения
- •2.1.5Архитектура компьютеров 4-го поколения.
- •2.1.6Современная эвм
- •3История развития и архитектура современных микропроцессоров
- •3.1Микропроцессор.
- •3.2Архитектура фон Неймана применительно к микропроцессору.
- •3.3Общая структура процессора
- •3.4Архитектура микропроцессора
- •3.4.1Архитектура как совместимость с кодом
- •3.4.2Архитектура как совокупность аппаратных решений, присущих определённой группе процессоров.
- •3.4.3Суперскалярность и внеочередное исполнение команд
- •3.5Потребительские характеристики микропроцессоров
- •3.5.1Частота работы ядра микропроцессора
- •3.5.2Частота и разрядность системной шины
- •3.5.3Количество ядер( потоков)
- •3.5.4Размер кэш-памяти
- •3.5.5Процессорный разъём
- •3.5.6Тепловой пакет
- •3.5.7Наличие встроенной графики
- •3.6Методы повышения производительности
- •3.7Разгон микропроцессора
- •3.7.1История вопроса
- •4Материнские платы. Чипсет и его назначение
- •4.1Северный и южный мосты
- •5Системы охлаждения эвм
- •5.1Виды охлаждения
- •5.2Особенности реализации воздушного охлаждения.
- •5.2.1Радиаторы
- •5.2.2Тепловые трубки
- •5.2.3Вентилятор
2.1.2Фон-неймановская архитектура (первое поколение эвм)
Команды и данные представляются в двоичном коде. Выполняемая программа и оперативные данные выполняемой программы хранятся в оперативной памяти (ОЗУ). Постоянное запоминающее устройство (ПЗУ) используется для хранения постоянных данных и программ. Так, например, в ПЗУ хранятся служебные программы, обеспечивающие взаимодействие оператора (пользователя) с компьютером при помощи устройств ввода-вывода ( УВВ) и устройства управления (УУ). При вводе и выводе данных в компьютерах первого поколения процессор простаивает. Среди устройств ввода-вывода важное место занимает пульт управления, предназначенный для оператора. Оператор может прервать выполнение программы, внести необходимые изменения, и вновь выполнить программу или перейти к решению другой задачи. Пульт управления связан с процессором при помощи устройства управления, формирующего необходимые управляющие сигналы.
2.1.3Архитектура компьютеров 2 поколения
В структуру ЭВМ второго поколения был введен специализированный процессор, управляющий обменом данных между устройствами ввода/вывода и основной памятью. Это управление осуществляется программой ввода/вывода, которая считывается из основной памяти и выполняется процессором ввода/вывода автономно. Для обеспечения возможности совместной работы процессора ввода/вывода и центрального процессора были введены прерывания работы центрального процессора по сигналу от процессора ввода/вывода об окончании операции.
В командах можно было указывать адрес операнда непосредственно или использовать команды, формирующие адрес при помощи индексного регистра.
В архитектуре ЭВМ второго поколения можно отметить следующие особенности:
применение специальных устройств преобразования адресов;
использование индексного регистра;
применение иерархической структуры памяти;
обособленное управление вводом / выводом;
использование системы прерываний для работы с устройствами ввода/вывода;
использование принципов микропрограммного управления;
Процессор пересылает данные в определенную область памяти и передает управление контроллеру канала ввода /вывода (КВВ), при этом он продолжает вычисления. После обработки устройством ввода вывода принятых данных или после передачи данных устройством ввода/вывода (УВВ), контроллер канала ввода/вывода ( КВВ) формирует сигнал прерывания, при этом возможно прерывание работы процессора и обслуживание запроса устройства ввода/вывода.
Сущность микропрограммного управления состоит в том, что любая машинная операция выполняется как последовательность микроопераций, вместо аппаратного формирования управляющих сигналов используется микропрограмма. Сигналы управления последовательно читаются из памяти микропрограмм и устанавливаются на соответствующих линиях управления. Для передачи сигналов управления используется специальная шина - шина управления.
Среди ЭВМ второго поколения появились и первые суперкомпьютеры, предназначенные для решения сложных задач, требовавших высокой скорости вычислений, в них были применены методы параллельной обработки, увеличивающие число операций, выполняемых в единицу времени - конвейеризация команд, во время выполнения одной команды вторая считывается из памяти и готовится к выполнению и параллельная обработка нескольких программ. ЭВМ, выполняющие параллельно несколько программ при помощи нескольких микропроцессоров, получили название мультипроцессорных систем.