- •Глава 2 3
- •Глава 3 11
- •Глава 10 117
- •Глава 2 Автоупаковка и автораспаковка
- •Обзор оболочек типов и упаковки значений
- •Основы автоупаковки/распаковки
- •Автоупаковка и методы
- •Автоупаковка/распаковка в выражениях
- •Автоупаковка/распаковка логических и символьных значений
- •Помощь автоупаковки/распаковки в предупреждении ошибок
- •Предостережения
- •Глава 3 Настраиваемые типы
- •Что такое настраиваемые типы
- •Простой пример применения настраиваемых типов
- •Средства настройки типов работают только с объектами
- •Различия настраиваемых типов, основанных на разных аргументах типа
- •Как настраиваемые типы улучшают типовую безопасность
- •Настраиваемый класс с двумя параметрами типа
- •Общий вид объявления настраиваемого класса
- •Ограниченные типы
- •Применение метасимвольных аргументов
- •Ограниченные метасимвольные аргументы
- •Создание настраиваемого метода
- •Настраиваемые конструкторы
- •Настраиваемые интерфейсы
- •Типы raw и разработанный ранее код
- •Иерархии настраиваемых классов
- •Использование настраиваемого суперкласса
- •Настраиваемый подкласс
- •Сравнения типов настраиваемой иерархии во время выполнения программы
- •Переопределенные методы в настраиваемом классе
- •Настраиваемые типы и коллекции
- •Стирание
- •Методы-подставки
- •Ошибки неоднозначности
- •Некоторые ограничения применения настраиваемых типов
- •Нельзя создавать объекты, используя параметры типа
- •Ограничения для статических членов класса
- •Ограничения для настраиваемого массива
- •Ограничение настраиваемых исключений
- •Заключительные замечания
- •Глава 4 Вариант For-Each цикла for
- •Описание цикла for-each
- •Обработка многомерных массивов в цикле
- •Область применения цикла for в стиле for-each
- •Использование цикла for в стиле for-each для обработки коллекций
- •Создание объектов, реализующих интерфейс Iterable
- •Глава 5 Аргументы переменной длины
- •Средство формирования списка с переменным числом аргументов
- •Перегрузка методов с аргументом переменной длины
- •Аргументы переменной длины и неоднозначность
- •Глава 6 Перечислимые типы
- •Описание перечислимого типа
- •Методы values() и valueOf()
- •Перечислимый тип в Java — это класс
- •Перечислимые типы, наследующие тип enum
- •Глава 7 Метаданные
- •Описание средства "метаданные"
- •Задание правил сохранения
- •Получение аннотаций во время выполнения программы с помощью рефлексии
- •Листинг 7.3. Получение всех аннотаций для класса и метода
- •Интерфейс AnnotatedElement
- •Использование значений по умолчанию
- •Аннотации-маркеры
- •Одночленные аннотации
- •Встроенные аннотации
- •Несколько ограничений
- •Глава 8 Статический импорт
- •Описание статического импорта
- •Общий вид оператора статического импорта
- •Импорт статических членов классов, созданных Вами
- •Неоднозначность
- •Предупреждение
- •Глава 9 Форматированный ввод/вывод
- •Форматирование вывода с помощью класса Formatter
- •Конструкторы класса Formatter
- •Методы класса Formatter
- •Основы форматирования
- •Форматирование строк и символов
- •Форматирование чисел
- •Форматирование времени и даты
- •Спецификаторы %n и %%
- •Задание минимальной ширины поля
- •Задание точности представления
- •Применение флагов форматирования
- •Выравнивание вывода
- •Флаг запятая
- •Применение верхнего регистра
- •Использование порядкового номера аргумента
- •Применение метода printf() языка Java
- •Класс Scanner
- •Конструкторы класса Scanner
- •Описание форматирования входных данных
- •Несколько примеров применения класса Scanner
- •Установка разделителей
- •Другие свойства класса Scanner
- •Глава 10 Изменения в api
- •Возможность применения настраиваемых типов при работе с коллекциями
- •Обновление класса Collections
- •Почему настраиваемые коллекции
- •Модернизация других классов и интерфейсов для применения настраиваемых типов
- •Новые классы и интерфейсы, добавленные в пакет java.Lang
- •Класс ProcessBulider
- •Класс StringBuilder
- •Интерфейс Appendable
- •Интерфейс Iterable
- •Интерфейс Readable
- •Новые методы побитной обработки классов Integer и Long
- •Методы signum() u reverseBytes()
- •Поддержка 32-битных кодовых точек для символов Unicode
- •Новые подпакеты пакета java.Lang
- •Классы Formatter и Scanner
Применение метасимвольных аргументов
Как ни полезна безопасность типов, иногда она может мешать формированию вполне приемлемых конструкций. Предположим, что в имеющийся класс Stats, описанный в предыдущем разделе, Вы хотите добавить метод sameAvg() который определяет, содержатся ли в двух объектах Stats массивы с одинаковым значением среднего арифметического, независимо от типа числовых данных массивов. Например, если один объект содержит значения 1.0, 2.0 и 3.0 типа double, а второй целые числа 1, 2 и 3, средние арифметические массивов будут одинаковы. Один из способов реализации метода sameAvg( ) — передача в класс Stats аргумента, последующее сравнение среднего арифметического этого аргумента со средним арифметическим объекта, вызвавшего метод, и возврат значения true, если средние арифметические одинаковы. Например, можно попытаться вызвать метод sameAvg(), как показано в следующем фрагменте кода:
Integer inums[] = {1, 2, 3, 4, 5 };
Double dnums[] = {1.1, 2.2, 3.3, 4.4, 5.5 };
Stats<Integer> iob = new Stats<Integer>(inums);
Stats<Double> dob = new Stats<Double>(dnums);
if(iob.sameAvg(dob))
System.out.println("Averages are the same.");
else
System.out.println("Averages differ.");
Поскольку Stats — настраиваемый класс, его метод sameAvg() может обрабатывать любой объект типа Stats и кажется, что создать этот метод просто. К сожалению, возникнут проблемы, как только Вы попытаетесь объявить параметр типа для класса Stats. Класс Stats — это параметризованный тип и неясно, какой же тип объявлять для параметра типа класса Stats в списке параметров метода.
Вам может показаться, что решение выглядит так, как показано в следующих строках кода, использующих T как параметр типа.
// Этот пример не будет работать!
// Определяет, равны ли средние арифметические.
boolean sameAvg(Stats<T> ob) {
if ((average) == ob.average())
return true;
return false;
}
К сожалению, приведенный пример будет обрабатывать только те объекты класса Stats, у которых тип такой же, как у объекта, вызвавшего метод. Например, если метод вызывает объект типа Stats<Integer>, параметр ob должен тоже быть типа Stats<Integer>. Такой метод нельзя использовать для сравнения среднего арифметического объекта Stats<Double> со средним арифметическим объекта типа Stats<Short>. Следовательно, предложенный подход не будет работать, за исключением нескольких ситуаций, и не даст общего (т. е. универсального) решения.
Для создания универсального метода sameAvg() Вы должны использовать другую функциональную возможность средств настройки типов — мета символьный аргумент, или символьную маску (wildcard argument). Метасимвольный аргумент задается знаком ? и представляет неизвестный тип. Используя такую маску, можно описать метод sameAvg( ) так, как показано в следующем фрагменте кода:
// Определяет, равны ли средние арифметические.
// Обратите внимание на применение метасимвола.
boolean sameAvg(Stats<?> ob) {
if ((average) == ob.average())
return true;
return false;
}
В приведенном примере тип Stats<?> соответствует любому объекту типа Stats и позволяет сравнивать средние арифметические двух объектов типа Stats, как показано в листинге 3.6.
Листинг 3.6. Применение метасимвола, или символьной маски
class Stats<T extends Number> {
T[] nums;
// массив типа Number или его подкласса
// Передает конструктору ссылку на
// массив типа Number или его подкласса.
Stats(T[] o) {
nums = o;
}
// Всегда возвращает тип double.
double average() {
double sum = 0.0;
for(int i=0; i < nums.length; i++)
sum += nums[i].doubleValue();
return sum / nums.length;
}
// Определяет, равны ли два средних арифметических.
// Обратите внимание на использование метасимвола (или маски).
boolean sameAvg(Stats<?> ob) {
if(average() == ob.average())
return true;
return false;
}
}
// Демонстрирует применение метасимвола.
class WildcardDemo {
public static void main(String args[]) {
Integer inums[] = { 1, 2, 3, 4, 5 };
Stats<Integer> iob = new Stats<Integer>(inums);
double v = iob.average();
System.out.println("iob average is " + v);
Double dnums[] = { 1.1, 2.2, 3.3, 4.4, 5.5 };
Stats<Double> dob = new Stats<Double>(dnums);
double w = dob.average();
System.out.println("dob average is " + w);
Float fnums[] = { 1.0F, 2.0F, 3.0F, 4.0F, 5.0F };
Stats<Float> fob = new Stats<Float>(fnums);
double x = fob.average();
System.out.println("fob average is " + x);
// Проверяет, у каких массивов одинаковые средние арифметические.
System.out.print("Averages of iob and dob ");
if(iob.sameAvg(dob))
System.out.println("are the same.");
else
System.out.println("differ.");
System.out.print("Averages of iob and dob ");
if(iob.sameAvg(fob))
System.out.println("are the same.");
else
System.out.println("differ.");
}
}
Далее приведен вывод программы из листинга 3.6:
iob average is 3.О
dob average is 3.3
fob average is 3.0
Averages of iob and dob differ.
Averages of iob and fob are the same.
Последнее замечание: важно понять, что метасимвол не влияет на тип создаваемого объекта класса Stats. Тип определяется ключевым словом extends в объявлении класса Stats. Метасимвол, или маска, обеспечивает совместимость любых допустимых объектов типа Stats.
