
Добавил:
Upload
Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз:
Предмет:
Файл:Сурин Математ анализ Практич пособие.doc
X
- •Содержание
- •Введение
- •Действительные числа и их свойства
- •I. Примеры решения задач
- •II. Контрольные вопросы и задания
- •III. Практические задания
- •Грани числовых множеств
- •I. Примеры решения задач
- •II. Контрольные вопросы и задания
- •III. Практические задания
- •Модуль действительного числа
- •I. Примеры решения задач
- •II. Контрольные вопросы и задания
- •III. Практические задания
- •II. Контрольные вопросы и задания
- •III. Практические задания
- •Предел последовательности
- •I. Примеры решения задач
- •II. Контрольные вопросы и задания
- •III. Практические задания
- •Предельные точки последовательности
- •I. Примеры решения задач
- •II. Контрольные вопросы и задания
- •III. Практические задания
- •Функции действительного переменного
- •I. Примеры решения задач
- •II. Контрольные вопросы и задания
- •III. Практические задания
- •Свойства функций действительного переменного
- •I. Примеры решения задач
- •Контрольные вопросы и задания
- •III. Практические задания
- •Сложная функция. Обратная функция
- •I. Примеры решения задач
- •II. Контрольные вопросы и задания
- •III. Практические задания
- •Предел функции
- •I. Примеры решения задач
- •II. Контрольные вопросы и задания
- •III. Практические задания
- •1.Докажите, пользуясь определением предела функции в точке, что:
- •Техника нахождения пределов функций
- •I. Примеры решения задач
- •II. Контрольные вопросы и задания
- •III. Практические задания
- •Сравнение бесконечно малых функций
- •I. Примеры решения задач
- •II. Контрольные вопросы и задания
- •III. Практические задания
- •Односторонние пределы. Непрерывность функции
- •I. Примеры решения задач
- •II. Контрольные вопросы и задания
- •III. Практические задания
- •Задания для самостоятельной работы
- •1. Решите неравенство, исходя из определения модуля действительного числа, и геометрически.
- •3. Используя определение предела последовательности, определение бесконечно большой последовательности или определение предела функции, докажите, что:
- •4. Найдите указанные пределы.
- •5. Найдите пределы функций.
- •6. Найдите пределы, используя второй замечательный предел
- •7. Исследовать на непрерывность функцию в указанных точках. Определить вид точек разрыва.
- •8. Исследовать на непрерывность функцию. Указать вид точек разрыва. Схематически изобразить график функции.
- •Список литературы Учебники и учебная литература
- •Сборники задач и упражнений
- •Математический анализ
- •210038, Г. Витебск, Московский проспект, 33.
Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]