Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Учебник по КСЕ Зобовой М.Р..docx
Скачиваний:
1
Добавлен:
01.03.2025
Размер:
10.96 Mб
Скачать

1)Закон сохранения импульса есть следствие однородности пространства. Величина импульса не зависит от выбора начальной точки отсчёта в пространстве (сдвиг в пространстве).

Закон сохранения импульса (Закон сохранения количества движения) утверждает, что сумма импульсов всех тел (или частиц) замкнутой системы есть величина постоянная.

Из законов Ньютона можно показать, что при движении в пустом пространстве импульс сохраняется во времени, а при наличии взаимодействия скорость его изменения определяется суммой приложенных сил. В классической механике закон сохранения импульса обычно выводится как следствие законов Ньютона. Однако этот закон сохранения верен и в случаях, когда ньютоновская механика неприменима (релятивистская физика, квантовая механика).

Вывод из законов Ньютона.

Рассмотрим выражение определения силы:

Перепишем его для системы из N частиц:

где суммирование идет по всем силам, действующим на n-ю частицу со стороны m-ой. Согласно третьему закону Ньютона, Тогда после подстановки полученного результата в выражение (1) правая часть будет равна нулю, то есть:

Как известно, если производная от некоторого выражения равна нулю, то это выражение есть постоянная величина относительно переменной дифференцирования, а значит:

(постоянный вектор).

То есть суммарный импульс системы частиц есть величина постоянная. Нетрудно получить аналогичное выражение для одной частицы.

2)закон сохранения момента импульса (речь идёт об интенсивности вращательного движения) есть следствие изотропности пространства, т.е. независимость величины момента импульса от направления осей координат в пространстве.

Момент импульса (кинетический момент, угловой момент, орбитальный момент, момент количества движения) характеризует количество вращательного движения. Величина, зависящая от того, сколько массы вращается, как она распределена относительно оси вращения и с какой скоростью происходит вращение.

Следует учесть, что вращение здесь понимается в широком смысле, не только как регулярное вращение вокруг оси. Например, даже при прямолинейном движении тела мимо произвольной воображаемой точки, оно также обладает моментом импульса. Наибольшую роль момент импульса играет при описании собственно вращательного движения.

Момент импульса замкнутой системы сохраняется.

Момент импульса частицы относительно некоторого начала отсчёта определяется векторным произведением ее радиус-вектора и импульса:

где r — радиус-вектор частицы относительно выбранного неподвижного в данной системе отсчета начала отсчёта, p — импульс частицы.

В системе СИ момент импульса измеряется в единицах джоуль-секунда; (Дж·с.)

Из определения момента импульса следует его аддитивность.

Закон сохранения момента импульса (закон сохранения углового момента) — векторная сумма всех моментов импульса относительно любой оси для замкнутой системы остается постоянной в случае равновесия системы. В соответствии с этим, момент импульса замкнутой системы относительно любой неподвижной точки не изменяется со временем.

Изотропность — одно из ключевых свойств пространства в классической механике. Пространство называется изотропным, если поворот системы отсчета на произвольный угол не приведет к изменению результатов измерений.

Изотропность пространства означает, что в пространстве нет какого-то выделенного направления, относительно которого существует «особая» симметрия, все направления равноправны.

Следует отличать изотропность от однородности пространства.

Однородность пространства означает, что все точки пространства равноправны, поэтому рассматриваемый эксперимент не зависит от нашего выбора точки отсчета.

Однородность — одно из ключевых свойств пространства в классической механике. Пространство называется однородным, если параллельный перенос системы отсчета не влияет на результат измерений.