
- •© Зимон а.Д., , Евтушенко а.М., Крашенинникова и.Г. Учебно-практическое пособие. – м., мгуту, 2004.
- •Виды дисперсных систем г л а в а 13 Основы дисперсионного анализа
- •13.1. Распределение частиц полидисперсных систем по размерам
- •13.2. Размер частиц неправильной формы
- •13.3. Оптические методы дисперсионного анализа
- •13.4. Нефелометрия и турбидиметрия
- •13.5. Дисперсионный анализ суспензий
- •Золи и суспензии
- •14.1. Особенности золей и суспензий
- •14.2. Пасты, гели и осадки как структурированные системы
- •Эмульсии
- •15.1. Свойства эмульсий
- •15.2. Устойчивость эмульсий
- •(А) и обратных в/м — (б) эмульсиях
- •15.3. Получение и разрушение эмульсий
- •15.4. Применение эмульсий
- •16.1. Свойства и особенности пен
- •16.2. Устойчивость пен
- •16.3. Получение и применение пен
- •Возможные источники образования, тип и форма некоторых пен в пищевой промышленности и продуктах питания
- •Аэрозоли
- •17.1. Классификация аэрозолей
- •Классификация аэрозолей
- •17.2. Образование и свойства аэрозолей
- •17.3. Механика аэрозолей
- •17.5. Сыпучие материалы (порошки)
- •Системы с твердой дисперсионной средой
- •18.1. Характеристика систем с твердой дисперсионной средой
- •18.2. Твердые пены
- •18.3. Капиллярно-пористые тела
- •Высокомолекулярные соединения (вмс)
- •19.1. Коллоидная химия вмс
- •19.2. Структура макромолекул вмс
- •19.3. Свойства растворов вмс
- •19.4. Набухание
- •19.5. Студни и студнеобразование
- •Характеристика студней и гелей
- •19.6. Свойства гелей и студней
- •Белки (полиэлектролиты)
- •20.1. Белки как полиэлектролиты
- •20.1. Структура макромолекулы фибриллярного белка кератина
- •20.2. Белки как коллоидные растворы
- •Коллоидные поверхностно-активные вещества
- •21.1. Особенности и классификация коллоидных пав
- •21.2. Критическая концентрация мицеллообразования
- •21.3. Гидрофобные взаимодействия и моющее действие
- •Тесты для самостоятельной проработки
- •Ответы на тестовые задания
- •Вопросы для самоконтроля
- •Список литературы
14.2. Пасты, гели и осадки как структурированные системы
При увеличении концентрации частиц дисперсной фазы системы из свободнодисперсных превращаются в связнодисперсные. Связнодисперсные системы, в которые переходят суспензии, называют пастами. Золи переходят в гели. Пасты и гели образуют структуры, и для них характерны структурно-механические свойства, которые были рассмотрены ранее (см. гл. 11).
Пасты представляют собой концентрированные суспензии или осадок, который образуется в результате потери суспензией седиментационной устойчивости. Кроме того, пасты могут быть приготовлены искусственно путем растирания твердых тел или порошков в жидкой среде.
Осадки золей в отличие от осадков суспензий могут переходить обратно в коллоидный раствор.
Этот процесс, обратный коагуляции, т.е. распад агрегатов до первичных частиц и переход части осадка во взвешенное состояние, называется пептизацией. Для высокодисперсных систем динамическое равновесие между коагуляцией и пептизацией можно представить следующим образом:
(14.1)
где Е — энергия связи между частицами; z — координационное число частицы в пространстве агрегата; V1 — объем, приходящийся на одну частицу; Vэ — эффективный объем, в котором происходит смещение частиц относительно положения равновесия в агрегатах; k — постоянная Больцмана.
Для лиофильных дисперсных систем, которые характеризуются низким межфазовым поверхностным натяжением и незначительной энергией связи Е, реализуется условие 0,5 zE < kT ln(V1/Vэ), и коагуляция термодинамически невозможна. В лиофобных системах, когда энергия связи частиц Е значительна, коагуляцию можно считать практически необратимой.
Пептизация может протекать под действием электролитов, при этом восстанавливается ДЭС, повышается ζ-потенциал, а силы электростатического отталкивания преобладают над силами межмолекулярного взаимодействия (см. рис. 10.5). Пептизация также может происходить под действием растворов ПАВ, молекулы которых адсорбируются на границе раздела фаз и образуют адсорбционные слои, способные противодействовать сближению частиц.
В
результате действия электролитов или
растворов ПАВ между частицами возникает
дополнительная сила отталкивания. Связь
и контакт между частицами нарушаются,
осадок распадается на отдельные частицы
коллоидного размера. Эти частицы из
области большей концентрации (осадок)
переходят за счет диффузии в область
меньшей концентрации, т.е. во взвешенное
состояние, образуя золь.
П
Рис. 14.
Изменение массы перешедшего в раствор
осадка mос
в зависимости от концентрации пептизатора
С
Г л а в а 15