
- •© Зимон а.Д., , Евтушенко а.М., Крашенинникова и.Г. Учебно-практическое пособие. – м., мгуту, 2004.
- •Виды дисперсных систем г л а в а 13 Основы дисперсионного анализа
- •13.1. Распределение частиц полидисперсных систем по размерам
- •13.2. Размер частиц неправильной формы
- •13.3. Оптические методы дисперсионного анализа
- •13.4. Нефелометрия и турбидиметрия
- •13.5. Дисперсионный анализ суспензий
- •Золи и суспензии
- •14.1. Особенности золей и суспензий
- •14.2. Пасты, гели и осадки как структурированные системы
- •Эмульсии
- •15.1. Свойства эмульсий
- •15.2. Устойчивость эмульсий
- •(А) и обратных в/м — (б) эмульсиях
- •15.3. Получение и разрушение эмульсий
- •15.4. Применение эмульсий
- •16.1. Свойства и особенности пен
- •16.2. Устойчивость пен
- •16.3. Получение и применение пен
- •Возможные источники образования, тип и форма некоторых пен в пищевой промышленности и продуктах питания
- •Аэрозоли
- •17.1. Классификация аэрозолей
- •Классификация аэрозолей
- •17.2. Образование и свойства аэрозолей
- •17.3. Механика аэрозолей
- •17.5. Сыпучие материалы (порошки)
- •Системы с твердой дисперсионной средой
- •18.1. Характеристика систем с твердой дисперсионной средой
- •18.2. Твердые пены
- •18.3. Капиллярно-пористые тела
- •Высокомолекулярные соединения (вмс)
- •19.1. Коллоидная химия вмс
- •19.2. Структура макромолекул вмс
- •19.3. Свойства растворов вмс
- •19.4. Набухание
- •19.5. Студни и студнеобразование
- •Характеристика студней и гелей
- •19.6. Свойства гелей и студней
- •Белки (полиэлектролиты)
- •20.1. Белки как полиэлектролиты
- •20.1. Структура макромолекулы фибриллярного белка кератина
- •20.2. Белки как коллоидные растворы
- •Коллоидные поверхностно-активные вещества
- •21.1. Особенности и классификация коллоидных пав
- •21.2. Критическая концентрация мицеллообразования
- •21.3. Гидрофобные взаимодействия и моющее действие
- •Тесты для самостоятельной проработки
- •Ответы на тестовые задания
- •Вопросы для самоконтроля
- •Список литературы
Белки (полиэлектролиты)
Белки являются основным субстратом жизни. Они входят в состав всех животных организмов.
Белки составляют необходимую часть продуктов питания. Микробиологические и биохимические процессы в организме, а также в нeкoтopыx технологических циклах во многом oпpeдeляютcя свойствами белков. Белки являются высокомолекулярными соединениями и одновременно содержат ионизирующие группы, т.е. обладают свойствами полиэлектролитов; они проявляют ряд специфических коллоидно-химических свойств.
Политэлектролиты делятся на поликислоты, полиоснования и полиамфолиты. Сильные электролиты в отличие от слабых в водных растворах полностью ионизированы. Сильные электролиты содержат сульфо-, сульфатные или фосфатные группы, например, поливинилсульфокислотные [–CH2CH(SO3H)–], а сильные основания — четвертичные аммониевые группы (CH3)2–N+(CH3)2. К слабым относятся поликислоты, содержащие карбоксильную группу, а слабыми основаниями являются соединения, включающие первичные, вторичные и третичные аминогруппы.
20.1. Белки как полиэлектролиты
Полиэлектролиты — это ВМС, в состав макромолекул которых входят группы, способные к ионизации в растворе. Полиэлектролиты содержат большое число ионогенных групп («поли»), а их растворы способны пропускать электрический ток («электролиты»). Ионогенные группы могут быть кислотными или основными, а также одновременно кислотными и основными.
К полиэлектролитам относятся некоторые иониты и флокулянты (см. параграфы 6.5 и 10.7)
Кислотную карбоксильную группу (–СООН) содержит растворимая часть крахмала, а сульфогруппу (–SO3) — растворимая часть агар-агара. Основные свойства полиэлектролитов определяются аминогруппой –NH2. Белки являются наиболее распространенными полиэлектролитами. Помимо кислотных (–СООН) белки содержат еще и основные группы (–NH2) и др. По этой причине их можно считать амфолитами.
Макромолекулы белков формируются из аминокислот (NH2–R–COOH). При взаимодействии карбоксильных и аминогрупп образуются пептидные связи
O || –C–NH–, которые формируют полипептидные цепи белков.
(20.1)
В прямоугольники заключены пептидные связи, а знаки «–» и «+» указывают на избыточный заряд, обусловленный смещением электронного облака и определяющий гидрофильность макромолекул.
В макромолекулах белков возможно различное сочетание полипептидных цепей, формирующихся всего из 20 простых аминокислот. Число различных сочетаний этих кислот определяется числом образующих макромолекул атомов (порядка 103—104) и значительным количеством конформационных степеней свободы (102–103). По этой причине полипептидная цепь может принимать множество микроскопических, конформационных состояний, порядка 10n (n — число аминокислотных остатков, достигающее несколько сотен), что и обусловливает многообразие белков.
Полипептидные цепи образуют первичную структуру белков, под которой подразумеваются ковалентная структурная основа макромолекул и определенная последовательность аминокислотных остатков. Молекулярная масса макромолекул белков может колебаться в пределах от 1,2∙104 до 106.
Все молекулы данного природного белка идентичны по аминокислотному составу, последовательности аминокислотных остатков и длине полипептидной связи. Так, гемоглобин крови человека состоит из 574 аминокислотных остатков и имеет молекулярную массу, равную 64500.
Белки в их естественном состоянии называют нативными, а их коллоидные свойства зависят от структуры макромолекул; различают глобулярную и фибриллярную структуру белков.
Макромолекулы фибриллярных белков представляют собой полипептидные цепи, вытянутые вдоль одной оси. Фибриллярные белки обычно нерастворимы в воде. На рис 20.1 приведена структура фибриллярного белка — кератина волос. Макромолекулы кератина навиты одна на другую подобно канату. В организме фибриллярные белки часто выполняют механические функции. Так, например, к фибриллярным белкам относятся коллаген и желатин — составные части кожи и сухожилий, а также миозин, входящий в состав мышц.
Белки, которые способны к образованию глобул, называют глобулярными (рис. 20.2, а). Глобулярные белки характеризуются специфической формой свертывания полипептидной цепи в пространстве. Коллоидио-химические свойства у глобулярных белков проявляются в большей степени, чем у фибриллярных. Большая часть полярных гидрофильных центров [см. формулу (20.1)] макромолекул белков находится снаружи глобул, что и определяет их гидрофильность, хорошую растворимость в воде и высокую реакционную способность.
Глобулярные белки содержатся в крови, лимфе, протоплазме клеток. К белкам этой группы относятся альбумины и глобулины яичного белка, молока, сыворотки крови, пепсин желудочного сока и др.