
- •1.Понятие микропроцессорной системы. Области применения микропроцессорных систем управления.
- •2.Обобщенные цели управления производственными процессами и техническими объектами.
- •3.Принципы управления. Классификация систем управления.
- •5.Особенности реализации пид-регуляторов
- •1.Погрешность дифференцирования и шум
- •2.Погрешности интегрирования
- •3.Безударное переключение режима
- •6.Дискретная форма пид-регуляторов.
- •7. Критерии качества систем управления с пид-регуляторами
- •1)Ослабление влияния внешних возмущений.
- •1)Аналитический
- •2) Упрощенный аналитический метод
- •4)Нахождение оптимальных коэффициентов регулятора
- •9. Нечеткая логика в пид-регуляторах
- •12.Основные компоненты микропроцессорных систем управления.
- •4. Модуль дискретного ввода (мдВв)
- •5.Двигатель постоянного тока(дпт)
- •13. Архитектура микропроцессорных систем управления. Требования к архитектуре.
- •14. Разновидности архитектуры микропроцессорных систем управления: система с общей шиной, многоуровневая архитектура.
- •16 Особенности и основные разновидности промышленных сетей.
- •17. Основные физические интерфейсы промышленных сетей.
- •18. Интерфейс rs-485
- •19. Интерфейсы «токовая петля».
- •20. Промышленная сеть Profibus.
- •22. Промышленная сеть can
- •23. Промышленный Ethernet
- •24. Беспроводные локальные сети промышленного назначения. Основные проблемы и пути их решения
- •25. Беспроводные промышленные сети Bluetooth.
- •26. Беспроводные промышленные сети ZigBee.
- •27. Беспроводные промышленные сети Wi-Fi.
- •28. Понятие программируемого логического контроллера. Основные типы плк.
- •29. Архитектура программируемого логического контроллера.
- •30. Основные характеристики программируемых логических контроллеров.
- •31. Применение компьютеров в системах автоматизации.
- •32. Развитие программного обеспечения средств автоматизации.
- •33. Системы программирования на языках мэк 61131-3.
- •34. Программирование на языках мэк 61131-3: язык релейно-контактных схем.
- •35. Программирование на языках мэк 61131-3: список инструкций, структурированный текст.
- •36. Программирование на языках мэк 61131-3: диаграммы функциональных блоков.
- •37. Программирование на языках мэк 61131-3: последовательные функциональные схемы.
- •38. Программное обеспечение для поддержки языков мэк 61131-3.
- •39. Понятие орс-сервера. Основные разновидности орс-серверов
- •40. Сервер opc da. Обмен информацией в системах автоматизации с opc da сервером.
- •41. Спецификация opc ua для обмена информацией в системах автоматизации
- •42. Пользовательский интерфейс в системах автоматизации. Scada-пакеты
- •43. Основные функции scada. Программное обеспечение scada
- •2. Диспетчерское упр-ние
- •3. Автоматич упр-ние
- •4. Хранение истории процессов
- •5. Выполнение функций безопасности
- •6. Выполнение общесистемных функций:
- •45. Понятие точности, разрешающей способности, порога чувствительности измерительного канала.
- •48. Виды и назначение фильтров в измерительных каналах.
- •49. Динамические погрешности при различных видов сигналов в измерительном канале.
- •50. Номенклатура устройств ввода-вывода микропроцессорных систем управления.
- •51. Модули ввода аналоговых сигналов в микропроцессорных системах управления.
- •52. Модули вывода аналоговых сигналов в микропроцессорных системах управления.
- •53. Модули ввода и вывода дискретных сигналов в микропроцессорных системах управления.
- •54. Модули ввода частоты, периода и счета импульсов в микропроцессорных системах управления.
- •55. Модули управления движением в микропроцессорных системах управления.
- •56. Микроконтроллеры – назначение, общая архитектура, история развития, основные серии
- •Общая архитектура микроконтроллеров
- •57. Микроконтроллеры Intel 8051.
- •58. Микроконтроллеры pic
- •59. Микроконтроллеры avr
- •Система команд avr
- •Семейства микроконтроллеров avr
- •Средства разработки avr
- •60. Аппаратная вычислительная платформа Arduino
- •Аппаратная часть
- •Платы расширений
- •Программное обеспечение Arduino
5.Особенности реализации пид-регуляторов
ПИД-регулятор и его модификации являются теоретическими идеализациями реальных регуляторов, поэтому для их практического воплощения необходимо учесть особенности, порождаемые реальными условиями применения и технической реализации. К таким особенностям относятся:
1.конечный динамический диапазон изменений физических переменных в системе (ограниченная мощность нагревателя)
2.ограниченная точность измерений, что требует специальных мер для выполнения операций дифференцирования с приемлемой погрешностью;
3.наличие практически во всех системах типовых нелинейностей: насыщение, ограничение скорости нарастания, гистерезис и люфт;
4.технологический разброс и случайные вариации параметров регулятора и объекта;
5.дискретная реализация регулятора;
6.необходимость плавного (безударного) переключение режимов регулирования.
Методы решения перечисленных проблем:
1.Погрешность дифференцирования и шум
Суть проблемы заключается в том, что производная вычисляется обычно как разность двух близких по величине значений функции, поэтому относительная погрешность производной всегда оказывается больше, чем относительная погрешность численного представления дифференцируемой функции.
В
частности, если на вход дифференциатора
поступает синусоидальный сигнал
Asin(wt),
то на выходе получим Acos(wt),
т.е. с ростом частоты и увеличивается
амплитуда сигнала на выходе дифференциатора.
Иначе говоря, дифференциатор усиливает
высокочастотные помехи, короткие
выбросы и шум. Если помехи, усиленные
дифференциатором, лежат за границей
рабочих частот ПИД-регулятора, то
их можно ослабить с помощью фильтра
верхних частот.
Кроме шумов дифференцирования, на характеристики ПИД-регулятора влияют шумы измерений. Через цепь обратной связи эти шумы поступают на вход системы и затем проявляются как дисперсия управляющей переменной и. Высокочастотные шумы вредны тем, что вызывают ускоренный износ трубопроводной арматуры и электродвигателей.
2.Погрешности интегрирования
Интегральное насыщение возникает в процессе выхода системы на режим в регуляторах с ненулевой постоянной интегрирования Ти ≠0. Интегральное насыщение приводит к затягиванию переходного процесса.
Аналогичный эффект возникает вследствие ограничения пропорционального и интегрального члена ПИД-регулятора
Суть проблемы интегрального насыщения состоит в том, что если сигнал на входе объекта управления u(t) вошел в зону насыщения (ограничения), а сигнал рассогласования r(t) – y(t) не равен нулю, интегратор продолжает интегрировать, т.е. сигнал на его выходе растет, но этот сигнал не участвует в процессе регулирования и не воздействует на объект вследствие эффекта насыщения.
W1-верхнее насыщение; w2-нижнее
3.Безударное переключение режима
Может возникнуть такая ситуация, когда в работающей системе потребовалось после ручного управления системой перейти на автоматический режим. Могут появиться нежелательные выбросы регулируемой величины, если не принять специальных мер. Поэтому возникает задача плавного («безударного») переключения режимов работы или параметров регулятора.
Основной метод решения проблемы заключается в построении такой структуры регулятора, когда изменение параметра выполнятся до этапа интегрирования.