
- •1.Понятие микропроцессорной системы. Области применения микропроцессорных систем управления.
- •2.Обобщенные цели управления производственными процессами и техническими объектами.
- •3.Принципы управления. Классификация систем управления.
- •5.Особенности реализации пид-регуляторов
- •1.Погрешность дифференцирования и шум
- •2.Погрешности интегрирования
- •3.Безударное переключение режима
- •6.Дискретная форма пид-регуляторов.
- •7. Критерии качества систем управления с пид-регуляторами
- •1)Ослабление влияния внешних возмущений.
- •1)Аналитический
- •2) Упрощенный аналитический метод
- •4)Нахождение оптимальных коэффициентов регулятора
- •9. Нечеткая логика в пид-регуляторах
- •12.Основные компоненты микропроцессорных систем управления.
- •4. Модуль дискретного ввода (мдВв)
- •5.Двигатель постоянного тока(дпт)
- •13. Архитектура микропроцессорных систем управления. Требования к архитектуре.
- •14. Разновидности архитектуры микропроцессорных систем управления: система с общей шиной, многоуровневая архитектура.
- •16 Особенности и основные разновидности промышленных сетей.
- •17. Основные физические интерфейсы промышленных сетей.
- •18. Интерфейс rs-485
- •19. Интерфейсы «токовая петля».
- •20. Промышленная сеть Profibus.
- •22. Промышленная сеть can
- •23. Промышленный Ethernet
- •24. Беспроводные локальные сети промышленного назначения. Основные проблемы и пути их решения
- •25. Беспроводные промышленные сети Bluetooth.
- •26. Беспроводные промышленные сети ZigBee.
- •27. Беспроводные промышленные сети Wi-Fi.
- •28. Понятие программируемого логического контроллера. Основные типы плк.
- •29. Архитектура программируемого логического контроллера.
- •30. Основные характеристики программируемых логических контроллеров.
- •31. Применение компьютеров в системах автоматизации.
- •32. Развитие программного обеспечения средств автоматизации.
- •33. Системы программирования на языках мэк 61131-3.
- •34. Программирование на языках мэк 61131-3: язык релейно-контактных схем.
- •35. Программирование на языках мэк 61131-3: список инструкций, структурированный текст.
- •36. Программирование на языках мэк 61131-3: диаграммы функциональных блоков.
- •37. Программирование на языках мэк 61131-3: последовательные функциональные схемы.
- •38. Программное обеспечение для поддержки языков мэк 61131-3.
- •39. Понятие орс-сервера. Основные разновидности орс-серверов
- •40. Сервер opc da. Обмен информацией в системах автоматизации с opc da сервером.
- •41. Спецификация opc ua для обмена информацией в системах автоматизации
- •42. Пользовательский интерфейс в системах автоматизации. Scada-пакеты
- •43. Основные функции scada. Программное обеспечение scada
- •2. Диспетчерское упр-ние
- •3. Автоматич упр-ние
- •4. Хранение истории процессов
- •5. Выполнение функций безопасности
- •6. Выполнение общесистемных функций:
- •45. Понятие точности, разрешающей способности, порога чувствительности измерительного канала.
- •48. Виды и назначение фильтров в измерительных каналах.
- •49. Динамические погрешности при различных видов сигналов в измерительном канале.
- •50. Номенклатура устройств ввода-вывода микропроцессорных систем управления.
- •51. Модули ввода аналоговых сигналов в микропроцессорных системах управления.
- •52. Модули вывода аналоговых сигналов в микропроцессорных системах управления.
- •53. Модули ввода и вывода дискретных сигналов в микропроцессорных системах управления.
- •54. Модули ввода частоты, периода и счета импульсов в микропроцессорных системах управления.
- •55. Модули управления движением в микропроцессорных системах управления.
- •56. Микроконтроллеры – назначение, общая архитектура, история развития, основные серии
- •Общая архитектура микроконтроллеров
- •57. Микроконтроллеры Intel 8051.
- •58. Микроконтроллеры pic
- •59. Микроконтроллеры avr
- •Система команд avr
- •Семейства микроконтроллеров avr
- •Средства разработки avr
- •60. Аппаратная вычислительная платформа Arduino
- •Аппаратная часть
- •Платы расширений
- •Программное обеспечение Arduino
54. Модули ввода частоты, периода и счета импульсов в микропроцессорных системах управления.
Функции счетчика, частотомера и измерителя периода следования импульсов обычно совмещаются в одном и том же модуле ввода. Такие модули могут быть использованы для решения следующих задач:
1.измерение скорости вращения вала двигателя с целью ее стабилизации или изменения по заданному закону;
2.подсчет количества продукции на конвейере
3.измерение частоты периодического сигнала;
4.работа с датчиками, имеющими импульсный выход (например, с энкодерами — датчиками угла поворота, электросчетчиками или анемометрами);
5.автоматическое дозирование счетной продукции;
6.подсчет количества продукции, выданной со склада.
Структуру типового модуля ввода рассмотрим на примере счетчика-частотомера NL-2C фирмы НИЛ АП. Он содержит два 32-разрядных счетчика-частотомера. Каждый счетчик имеет изолированные и неизолированные входы. Изолированные входы выполнены с помощью оптрона и являются пассивными со стороны источника сигнала. Неизолированные входы имеют программно регулируемые уровни логического нуля и единицы. Это позволяет уменьшить вероятность ошибочного срабатывания модуля в условиях помех, Для регулировки уровней использованы два 8-разрядных цифроуправляемых потенциометра. Для подавления помех служит также цифровой фильтр с перестраиваемыми параметрами, выполненный на микроконтроллере, входящем в состав модуля. Для расширения функциональных возможностей каждый счетный вход модуля имеет вход разрешения счета (Gate) и источник тока для питания «сухих» контактов. Модуль имеет также четыре изолированных дискретных выхода с общей «землей». Счетчик содержит четыре микроконтроллера. В состав модуля входит сторожевой таймер, вырабатывающий сигнал сброса, если микроконтроллер перестает вырабатывать сигнал «ОК» {это периодический сигнал, подтверждающий, что микроконтроллер не «завис»). Второй сторожевой таймер внутри микроконтроллера переводит выходы модуля в безопасные состояния («Safe Value»), если из управляющего компьютера перестает приходить сигнал «Host OK». Внешние управляющие команды посылаются в модуль через порт RS-485. Используются всего 54 команды, подробно описанные в руководстве по эксплуатации модуля.
55. Модули управления движением в микропроцессорных системах управления.
Контроллеры с модулями управления движением используются в роботах, металло- и деревообрабатывающих станках, сборочных линиях, типографских машинах, в оборудовании для обработки пищи, для дозирования и упаковки, для автоматической сварки и лазерной резки, для обработки полупроводниковых пластин и т.п.
В силу специфики задачи контроллеры для управления движением занимают отдельное место на рынке ПЛК, поскольку отличаются как параметрами модулей ввода-вывода, так и специализированным программным обеспечением. Основными отличиями от модулей общего применения являются повышенные требования к быстродействию и особый состав каналов ввода-вывода, оптимизированный для задач управления движением с целью минимизации стоимости. Типовой системой управления движением является электропривод, который является частным случаем системы автоматического регулирования с обратной и л и: прямой связью, В состав электропривода входит электродвигатель, датчики положения исполнительного механизма, контроллер и сервоусилитель. В электроприводах используют асинхронные и синхронные двигатели переменного тока, постоянного тока, шаговые, линейные двигатели, а также гидро- и пневмоцилиндры с насосами. Электропривод строится обычно с двумя контурами обратной связи. Внутренний контур с сигналом от датчика скорости (тахометра или инкрементного энкодера) используется для управления скоростью двигателя и часто реализуется внутри сервоусилителя. Внешний контур с обратной связью от оси двигателя или от его нагрузки используется для управления позицией исполнительного механизма и вращающим моментом. Обратная связь от нагрузки позволяет повысить точность реализации траектории движения и использовать нежесткие механические связи, однако усложняет настройку замкнутой Системы. Сигнал обратной связи внешнего контура поступает от датчиков положения, в качестве которых используют энкодеры, резольверы, потенциометры, датчики Холла и тахометры, Энкодеры делятся на абсолютные и инкрементные. Инкрементные энкодеры определяют изменение положения механизма, а абсолютные определяют его абсолютное положение, Резольверы выполняют ту же функцию, что и энкодеры, но имеют аналоговый выходной сигнал, поскольку построены на основе вращающегося трансформатора и выдают синусоидальный и косину сои дальный сигналы, которые позволяют вычислить положение вала двигателя. Недостатком резольвера является низкое быстродействие и необходимость использования АЦП.