
- •1.Понятие микропроцессорной системы. Области применения микропроцессорных систем управления.
- •2.Обобщенные цели управления производственными процессами и техническими объектами.
- •3.Принципы управления. Классификация систем управления.
- •5.Особенности реализации пид-регуляторов
- •1.Погрешность дифференцирования и шум
- •2.Погрешности интегрирования
- •3.Безударное переключение режима
- •6.Дискретная форма пид-регуляторов.
- •7. Критерии качества систем управления с пид-регуляторами
- •1)Ослабление влияния внешних возмущений.
- •1)Аналитический
- •2) Упрощенный аналитический метод
- •4)Нахождение оптимальных коэффициентов регулятора
- •9. Нечеткая логика в пид-регуляторах
- •12.Основные компоненты микропроцессорных систем управления.
- •4. Модуль дискретного ввода (мдВв)
- •5.Двигатель постоянного тока(дпт)
- •13. Архитектура микропроцессорных систем управления. Требования к архитектуре.
- •14. Разновидности архитектуры микропроцессорных систем управления: система с общей шиной, многоуровневая архитектура.
- •16 Особенности и основные разновидности промышленных сетей.
- •17. Основные физические интерфейсы промышленных сетей.
- •18. Интерфейс rs-485
- •19. Интерфейсы «токовая петля».
- •20. Промышленная сеть Profibus.
- •22. Промышленная сеть can
- •23. Промышленный Ethernet
- •24. Беспроводные локальные сети промышленного назначения. Основные проблемы и пути их решения
- •25. Беспроводные промышленные сети Bluetooth.
- •26. Беспроводные промышленные сети ZigBee.
- •27. Беспроводные промышленные сети Wi-Fi.
- •28. Понятие программируемого логического контроллера. Основные типы плк.
- •29. Архитектура программируемого логического контроллера.
- •30. Основные характеристики программируемых логических контроллеров.
- •31. Применение компьютеров в системах автоматизации.
- •32. Развитие программного обеспечения средств автоматизации.
- •33. Системы программирования на языках мэк 61131-3.
- •34. Программирование на языках мэк 61131-3: язык релейно-контактных схем.
- •35. Программирование на языках мэк 61131-3: список инструкций, структурированный текст.
- •36. Программирование на языках мэк 61131-3: диаграммы функциональных блоков.
- •37. Программирование на языках мэк 61131-3: последовательные функциональные схемы.
- •38. Программное обеспечение для поддержки языков мэк 61131-3.
- •39. Понятие орс-сервера. Основные разновидности орс-серверов
- •40. Сервер opc da. Обмен информацией в системах автоматизации с opc da сервером.
- •41. Спецификация opc ua для обмена информацией в системах автоматизации
- •42. Пользовательский интерфейс в системах автоматизации. Scada-пакеты
- •43. Основные функции scada. Программное обеспечение scada
- •2. Диспетчерское упр-ние
- •3. Автоматич упр-ние
- •4. Хранение истории процессов
- •5. Выполнение функций безопасности
- •6. Выполнение общесистемных функций:
- •45. Понятие точности, разрешающей способности, порога чувствительности измерительного канала.
- •48. Виды и назначение фильтров в измерительных каналах.
- •49. Динамические погрешности при различных видов сигналов в измерительном канале.
- •50. Номенклатура устройств ввода-вывода микропроцессорных систем управления.
- •51. Модули ввода аналоговых сигналов в микропроцессорных системах управления.
- •52. Модули вывода аналоговых сигналов в микропроцессорных системах управления.
- •53. Модули ввода и вывода дискретных сигналов в микропроцессорных системах управления.
- •54. Модули ввода частоты, периода и счета импульсов в микропроцессорных системах управления.
- •55. Модули управления движением в микропроцессорных системах управления.
- •56. Микроконтроллеры – назначение, общая архитектура, история развития, основные серии
- •Общая архитектура микроконтроллеров
- •57. Микроконтроллеры Intel 8051.
- •58. Микроконтроллеры pic
- •59. Микроконтроллеры avr
- •Система команд avr
- •Семейства микроконтроллеров avr
- •Средства разработки avr
- •60. Аппаратная вычислительная платформа Arduino
- •Аппаратная часть
- •Платы расширений
- •Программное обеспечение Arduino
17. Основные физические интерфейсы промышленных сетей.
Основные физические интерфейсы промышленных сетей:RS-232,RS-422иRS-485.
Описание их вспоминаем сами.
Интерфейс RS-232-C соединяет два устройства. Линия передачи первого устройства соединяется с линией приема второго и наоборот (полный дуплекс) Для управления соединенными устройствами используется программное подтверждение (введение в поток передаваемых данных соответствующих управляющих символов).
RS-485/RS-422 используют экранированную витую пару, экран в качестве сигнальной земли. Хотя сигнальная земля обязательна, она не используется для определения логического состояния линии. Устройство, управляющее сбалансированной линией (balanced line driver), может (для RS-485 - обязательно, для RS-422 - нет) так же иметь входной сигнал "Enable" (Разрешен), который используется для управления выходными терминалами устройства. Если сигнал "Enable" выключен, то это значит, что устройство отключено от линии, причем отключенное состояние устройства обычно называется "tristate" (т.е. третье состояние, вдобавок к двоичным 1 и 0).
18. Интерфейс rs-485
Интерфейс RS -485 является наиболее распространенным в промышленной автоматике. Его используют промышленные сети Моdbus, Ргоfibus и тд. Основными его достоинствами являются:
• двусторонний обмен данными всего по одной витой паре проводов;
• работа с несколькими трансиверами, подключенными к одной и той же линии, т.е. возможность организации сети;
• большая длина линии связи;
• достаточно высокая скорость передачи.
Принципы построения
Для минимизации чувствительности линии передачи к электромагнитной наводке используется витая пара проводов. Токи, наводимые в соседних витках вследствие явления электромагнитной индукции взаимно компенсируются.
Дифференциальная передача сигнала.
Приемники сигнала являются дифференциальными, т.е. воспринимают только разность между напряжениями на линии
В основе построения интерфейса RS -485 лежит дифференциальный способ передачи сигнала, когда напряжение, соответствующее уровню логической единицы или нуля, отсчитывается не от «земли», а измеряется как разность потенциалов между двумя передающими линиями: Dаtа+ и Dаtа— => помехи равны нулю
При этом напряжение каждой линии относительно «земли» не должно выходить за диапазон -7...+12 В.
При разности напряжений более 200 мВ, до +12 В считается, что на линии установлено значение логической единицы, при напряжении менее -200 мВ, до -7 В — логического нуля. Дифференциальное напряжение на выходе передатчика в соответствии со стандартом должно быть не менее 1,5В.
Выбросы защищают от искажений логические «0» и «1»
«Третье» состояние выходов. Второй особенностью передатчика D интерфейса RS-485 является возможность перевода выходных каскадов в «третье» (высокоомное) состояние сигналом DЕ (Driver Еnаble). Наличие третьего состояния позволяет осуществить полудуплексный обмен между любыми двумя устройствами, подключенными к линии, всего по двум проводам.
Четырехпроводной интерфейс. Интерфейс RS-485 имеет две версии: двухпроводную и четырехпроводную. Двухпроводная используется для полудуплексной передачи когда информация может передаваться в обоих направлениях, но в разное время. Для полнодуплексной (дуплексной) передачи используют четыре линии связи: по двум информация передается в одном направлении, по двум другим — в обратном.
Недостатком четырехпроводной схемы является необходимость жесткого указания ведущего и ведомых устройств на стадии проектирования системы, в то время как в двухпроводной схеме любое устройство может быть как в роли ведущего, так и ведомого. Достоинством четырехпроводной схемы является возможность одновременной передачи и приема данных, что бывает необходимо при реализации некоторых сложных протоколов обмена.
Режим приема эха. Если приемник передающего узла включен во время передачи, то передающий узел принимает свои же сигналы. Этот режим называется «приемом эха» - слушать не начали ли два передатчика работать
Топология сети на основе интерфейса RS-485
При скорости больше 9600 бит/с, то необходимо использовать топологию- шина, так как в противном случае будет происходить отражение.