
- •Введение
- •Раздел 1 методологические основы организации производства
- •Сущность, функции и цели оп
- •1.2. Виды и характер производственно-хозяйственной деятельности предприятий
- •Раздел II организация процесса подготовки производства нового изделия
- •2.1 Содержание процесса подготовки производства
- •2.2 Научно-исследовательская работа
- •2.3. Понятие и содержание технической подготовки производства
- •2.4 Конструкторская подготовка производства
- •2.4.1 Этапы конструкторской подготовки
- •2.4.2 Система конструкторской документации
- •2.5 Технологическая подготовка
- •2.5.1 Сущность технологической подготовки
- •2.5.2 Система документации по организации технологической подготовки производства
- •2.5.3. Обеспечение технологичности конструкции изделия
- •2.5.4 Оценка технологичности конструкции
- •Комплексный показатель технологичности:
- •2.6 Планирование технической подготовки
- •2.7 Организационная подготовка производства
- •Раздел III организация основного производства
- •3.1 Организация производственного процесса во времени
- •3.1.1. Структура производственного цикла
- •3.1.2.Виды движения деталей в процессе их изготовления
- •3.2.Организация производственного процесса в пространстве
- •3.2.1 Элементы производственной структуры
- •3.2.2 Типы производственной структуры
- •3.2.3 Основы организации поточного производства
- •3.2.4. Особенности расчета и организации однопредметных поточных линий
- •3.2.5 Особенности организации многопредметных поточных линий
- •3.2.6 Организация автоматизированного производства
- •Качество технической продукции
- •3.3.1 Понятие и оценка качества продукции
- •3.3.2 Организационные формы и методы технического контроля качества продукции
- •Раздел IV основы технологии машино-приборостроения
- •4.1. Понятие производственного процесса и его классификация
- •4.2 Понятие техпроцесса и его структура
- •Классификация тп по применяемости.
- •4.2.1 Структура технологического процесса
- •4.2.2 Основные требования, предъявляемые к техпроцессам
- •4.3 Типы производства, их технико-экономическая характеристика
- •Раздел V технология изготовления изделий основного производства машино-приборостроения
- •5.1 Классификация основных методов изготовления деталей и заготовок
- •5.2 Технология заготовительного производства машино-приборостроения
- •5.2.1. Литейное производство
- •5.2.2. Обработка металлов давлением
- •Технология изготовления деталей машин и приборов
- •5.3.1 Обработка материалов резанием
- •5.3.2 Токарная обработка
- •5.3.3 Обработка на сверлильных станках
- •5.3.4 Фрезерная обработка
- •5.3.5 Шлифование
- •5.3.6 Технико-экономическая характеристика обработки резанием
- •Современные методы обработки
- •Электроэрозионная обработка
- •Электрохимическая обработка
- •Ультразвуковая размерная обработка (узро)
- •Лазерная обработка
- •Электронно-лучевая размерная обработка
- •Плазменная обработка материалов
- •Технология сборочного производства
- •5.4.1 Разработка технологического процесса сборки
- •5.4.2 Организационные формы сборки
- •Виды соединения при сборке
- •5.4.4 Сварочное производство
- •Сварка плавлением
- •Сварка давлением
- •5.4.5 Пайка
- •5.4.6. Склеивание
- •Запрессовка
- •Сборка резьбовых соединений
- •5.4.10. Точность сборки и методы ее обеспечения
- •Раздел VI организация технического обслуживания
- •6.1 Организация инструментального хозяйства
- •6.2 Организация ремонтного хозяйства
- •6.3 Организация складского хозяйства
- •6.4 Организация транспортного хозяйства
- •6.5 Организация энергохозяйства
- •Раздел VII организация и нормирование труда на предприятии
- •7.1 Сущность, содержание и основные задачи научной организации труда
- •7.2 Организация нормирования труда
- •7.3 Методы изучения затрат рабочего времени
- •Список литературы
Электронно-лучевая размерная обработка
Электронно-лучевыми методами обработки материалов (резки, прошивания, сварки и др.) называются методы, в которых для технологических целей используется тепловая энергия, выделяющаяся при столкновении быстродвижущихся электронов с обрабатываемым материалом.
Повышая скорость движения электронов и их кинетическую энергию, а также увеличивая число электронов в пучке (т. е. увеличивая плотность пучка), можно создать чрезвычайно высокую концентрация тепловой энергии в зоне торможения электронного пучка.
Размерная обработка материалов электронным лучом осуществляется при плотности тепловой энергии выше 106-109 Вт/см2. Материал при такой плотности вскипает и испаряется, образуя на детали углубление (отверстие), а при перемещении луча - сквозной или глухой паз. В зоне обработки температура может достигать 6000 °С, а на расстоянии всего лишь 1 мкм от последней - 280-300 °С - отсюда высокая локализация процесса.
ЭДРО имеет ряд существенных достоинств, обусловливающих целесообразность её практического применения, а именно; возможность широкой регулировки режимов и тонкого управления тепловыми процессами; пригодность для обработки металлических и неметаллических материалов; повышенная чистота среды при обработке; высокий КПД (до 98%); возможность автоматизации процесса. Недостатки процесса: необходимость защиты от рентгеновского излучения, возникающего при работе на напряжениях свыше 20 кВ; относительно высокая стоимость и сложность оборудования; необходимость высокого вакуума; трудность непосредственного наблюдения за процессом.
Для осуществления процесса обработки электронным лучом требуется применение специальных устройств, которые называются электронно-лучевыми (ЭЛ) пушками, излучающих в достаточном количестве и о требуемой скоростью свободные электроны.
Схема ЭЛ пушки для размерной обработки представлена на рис. 5.20.
Основным элементом пупки является нагреваемый катод II, испускающий электроны, которые формируются полем прикатодного фокусирующего электрода 10, а затем ускоряются под действием разности потенциалов (ускоряющего напряжения) между катодом и анодом 9, после чего электронный луч фокусируется с помощью системы 2 и направляется на обрабатываемое изделие.
Для получения луча малого диаметра (от единиц до сотен мкм) применяют V -образный или шпилечный катод (II) (см. рис. 5.20 б). Прикатодный фокусирующий электрод (цилиндр Венельта) (10) на который подается отрицательное напряжение смещения относительно катода, фокусирует электроны в пучок, создавая на некотором расстоянии от катода участок с минимальным радиусом rs , который играет роль фиктивного катода, определяющего величину минимально возможного сечения луча на изделии.
Ускоренные и сфокусированные электроны проходят сквозь отверстия в аноде (9) и движутся далее с постоянной скоростью.
Рис. 5.20. Схема электронно-лучевой пушки для размерной обработки (а) , излучателя электронов (б) и профиль отверстия, полученного при обработке (в) :
1- излучатель электронов, 2- фокусирующая система, 3- стол с деталью, 4 микроскоп, 5-длиннофокусная магнитная линза, 6- корректирующие катушки, 7- диафрагмы, 8-короткофокусная магнитная линза, 9- анод, 10- фокусирующий электрод, 11- катод, 12-отклоняющая линза, 13- рабочая камера.
Короткофокусная магнитная линза (8) ( F= 2-3 мм) устанавливается ниже анода и может уменьшить электронный луч до 0,5 мкм. Однако наименьшее сечение пятна лежит близко к центру линзы и использовать его для технологических целей очень трудно. Поэтому устанавливается вторая - длиннофокусная линза (5) ( F=30-180 мм), которая переносит луч на деталь без изменения его поперечного сечения и одновременно увеличивает расстояние между линзой и плоскостью рабочего стола (до 160 мм), что позволяет обрабатывать дно крупногабаритных деталей и расположить контрольные приборы или устройства для развертки электронного луча в пространстве между линзой и деталью.
Установленные на пути электронного луча диафрагмы (7) пропускают только центральную часть, обрезая краевые рассеянные электроны. Стигматор (корректирующие катушки) (б) позволяют исправлять поперечное сечение луча до правильного круга в тех случаях, когда возникает искажение формы из-за дефектов изготовления полюсных наконечников магнитных линз. Отклоняющая система (Т2) позволяет перемещать луч во взаимно перпендикулярных направлениях и получать любое положение его на плоскости, а также плавно перемещать с заданной скоростью на площади 10 х 10 мм» При необходимости большего смещения луча, нарушающего остроту фокусировки, применяют устройства типа координатных или поворотных столов.
Так как электроны пучка в рабочей камере (13) должны доходить до детали без потерь энергии и без рассеяния луча, то необходимо во все время технологического процесса поддерживать в камере давление не более 1,3(10-2-10-3) Па, что достигается применением диффузионных насосов в сочетании с механическими.
Размерная обработка электронным лучом применяется для получения отверстий фигурной или цилиндрической формы малых диаметров (2-500 мкм), тонких пазов, щелей, прорезей размерами от нескольких десятков микрометров в материалах малой толщины (пленки, фольги), а также для разрезки материалов (полупроводников, ферритов, сверхчистых материалов и др.), особенно когда к поверхностям реза предъявляются особые требования.
Профиль отверстия, полученного ЭЛРО, представлен на рис.31 в. При небольших глубинах (Н) обработки диаметр отверстия ( d ) на 10 % больше диаметра электронного пучка djj , а при H/d >= 100 диаметр луча должен быть в два - четыре раза меньше отверстия. В настоящее время промышленность не выпускает установок, способных обеспечить постоянный минимальный диаметр луча на большом его отрезке. Поэтому, как правило, обработка отверстия ведется с изменением фокусного расстояния магнитной линзы по мере углубления отверстия.