
- •1.Силы в механике. Законы Ньютона
- •2 . Момент инерции тела. Момент импульса тела
- •3.Законы сохранения в физике. Сохранение импульса, момент импульса. Энергия в механике
- •4.Работа. Мощность. Энергия
- •5.Понятие о колебательных процессах. Амплитуда, круговая частота, фаза гармонических колебаний
- •6.Сложение гармонических колебаний. Энергия гармонических колебаний
- •7.Вынужденные колебания. Резонанс в механических системах.
- •8.Колебания в среде. Энергия, переносимая упругой волной
- •9.Уравнение волны. Звуковые волны. Стоячие волны.
- •10.Давление идеального газа(иг) с точки зрения молекулярно-кинетической теории
- •11.Молекулярно-кинетический смысл температуры
- •12.Явление переноса в идеальном газе. Вязкость
- •13.Первое и второе начала термодинамики
- •14.Цикл Карно. Максимальный кпд тепловой машины
- •15.Понятие электрического заряда. Взаимодействие зарядов. Закон Кулона
- •16.Элестрическое поле, его напряженность
- •17.Работа электрического поля
- •18.Понятие потенциала эл поля. Связь потенциала с напряженностью электростатического поля
- •19.Свойства проводников в электростатическом поле
- •20.Свойства диэлектриков в электростатическом поле
- •28. Дырочно-электронный переход в полупроводниках
- •29. Понятие магнитного поля. Сила Лоренца и сила Ампера
- •30.Движение заряженной частицы в электрическом и магнитном полях
- •31. Закон Био-Савара-Лапласа для расчета магнитных полей токов
- •32. Явления электромагнитной индукции. Правило Ленца
- •33.Взаимная индукция соленоидов. Работа трансформатора
- •34. Причины существования ферромагнетиков, парамагнетиков, диамагнетиков
- •35. Формирование электромагнитных колебаний в колебательном контуре
- •36.Понятие электромагнитных волн, волновое уравнение для световой волны
- •37.Связь параметров электрических и магнитных процессов в теории Максвелла
- •38.Законы отражения и преломления света
- •39. Понятия геометрической оптики. Тонкие линзы. Их фокусное расстояние. Оптическая сила
- •40. Условия полного отражения света. Световоды
- •41. Электромагнитная природа света. Монохроматизм и когерентность
- •42. Оптическая разность хода. Интерференция световых волн
- •43. Интерференция света в тонких плёнках
- •44. Дифракция волн и принцип Гюйгенса-Френеля
- •45.Дифракция света на одной щели. Дефракционная решетка
- •46. Понятие формирования голографического изображения
- •47. Поляризация света. Способы его поляризации
- •48.Двойное лучепреломление
- •49. Распространение света в веществе. Дисперсия света
- •50. Поглощение света, квантовомеханические причины
- •51. Рассеяние света
- •52. Фотоэлектрический эффект. Давление света
- •53. Постулаты Бора. Построение атома водорода
- •54. Излучение возбужденных атомов
- •55. Дифракция электронов и корпускулярно-волновой дуализм
- •56.Виды ядерных реакций. Период полураспада радиоактивных элементов
- •57.Импульс фотона. Эффект Комптона
- •58.Волновая функция. Гипотеза де Бройля
44. Дифракция волн и принцип Гюйгенса-Френеля
Дифра́кция во́лн-явление, которое можно рассматривать как отклонение от законов геометрической оптики при распространении волн. Первоначально понятие относилось только к огибанию волнами препятствий, но в современном, более широком толковании, с дифракцией связывают весьма широкий круг явлений, возникающих при распространении волн в неоднородных средах, а также при распространении ограниченных в пространстве волн. Дифракция тесно связана с явлением интерференции. Более того, само явление дифракции зачастую трактуют как частный случай интерференции (интерференция вторичных волн). Дифракционные эффекты зависят от соотношения между длиной волны и характерным размером неоднородностей среды либо неоднородностей структуры самой волны. Согласно принципу Гюйгенса, каждую точку фронта волны можно рассматривать как источник вторичных волн.Френель существенно развил этот принцип:
Все вторичные источники фронта волны, исходящей из одного источника, когерентны между собой.
Равные по площади участки волновой поверхности излучают равные интенсивности (мощности).
Каждый вторичный источник излучает свет преимущественно в направлении внешней нормали к волновой поверхности в этой точке. Амплитуда вторичных волн в направлении, составляющем угол α с нормалью, тем меньше, чем больше угол α, и равна нулю при .
Для вторичных источников справедлив принцип суперпозиции: излучение одних участков волновой поверхности не влияет на излучение других (если часть волновой поверхности прикрыть непрозрачным экраном, вторичные волны будут излучаться открытыми участками так, как если бы экрана не было).
45.Дифракция света на одной щели. Дефракционная решетка
Дифракционная решётка-оптический прибор, предназначенный для анализа спектрального состава оптического излучения. Дифракционная решётка состоит из тысяч узких и близко расположенных щелей. Из-за интерференции интенсивность света прошедшего через дифракционную решётку различна в различных направлениях. Имеются выделенные направления в которых световые волны от различных щелей решётки складываются в фазе, многократно усиливая друг друга. При освещении решётки монохроматическим светом на её выходе наблюдаются узкие лучи с большой интенсивностью. Так как направления на интерференционные максимумы зависят от длины волны, белый свет, прошедший через дифракционную решётку, будет расщепляться на множество лучей разного цвета. Таким образом мы можем исследовать спектральный состав света. Рассмотpим дифpакцию на одной щели. Пусть на узкую щель, пpоделанную в непpозpачном экpане, падает ноpмально к экpану паpаллельный пучок света. Пpоходя щель, свет огибает ее кpая. Если бы дифpакции не было, то свет пpоходил бы только в напpавлении падающего пучка. Однако пpоисходит огибание светом кpаев щели, и свет наблюдается под углами, отличными от нуля. Более того, наблюдаются полосы интеpфеpенции.
46. Понятие формирования голографического изображения
Голография-набор технологий для точной записи, воспроизведения и переформирования волновых полей. Когда в некоторой области пространства складываются несколько электромагнитных волн, частоты которых с очень высокой степенью точности совпадают, возникает интерференция. Когда записывают голограмму, в определённой области пространства складывают две волны: одна из них идёт непосредственно от источника (опорная волна), а другая отражается от объекта записи (объектная волна). В этой же области размещают фотопластинку (или иной регистрирующий материал), в результате на этой пластинке возникает сложная картина полос потемнения, которые соответствуют распределению электромагнитной энергии (картине интерференции) в этой области пространства. Если теперь эту пластинку осветить волной, близкой к опорной, то она преобразует эту волну в волну, близкую к объектной. Таким образом, мы будем видеть (с той или иной степенью точности) такой же свет, какой отражался бы от объекта записи. При записи голограммы крайне важно, чтобы длины волн (частоты) объектного и опорного лучей с максимальной точностью совпадали друг с другом, и разность их фаз не менялась в течение всего времени записи (иначе на пластинке не запишется чёткой картины интерференции).