
- •Системный анализ и принятие решений
- •14.1. Постановка задачи 87
- •Лекция 1. Введение в методологию системного анализа
- •1.1. Предмет и содержание курса. Основные определения
- •1.2. Классификация систем
- •1.3. Сущность системного подхода
- •Лекция 2. Задачи системного анализа
- •2.1. Характеристика задач системного анализа
- •Внедрение результатов анализа.
- •2.2. Основные приемы формализации задач системного анализа
- •2.3. Внедрение результатов анализа
- •2.4. Примеры задач системного анализа
- •Методика по Оптнеру
- •Лекция 3. Основные понятия и определения теории принятия решений
- •3.1. Основные принципы теории принятия решений
- •3.2. Постановка задач принятия оптимальных решений
- •3.3. Этапы принятия решений
- •Лекция 4. Построение (выбор) моделей системы
- •4.1. Классификация видов моделирования систем
- •4.2. Возможности и эффективность моделирования систем на вычислительных машинах
- •Лекция 5. Математическое программирование
- •5.1. Структура оптимизационных задач
- •5.2. Математические постановки задач, приводящие к моделям линейного программирования
- •Лекция 6. Содержательные постановки задач линейного программирования. Методы решения задач линейного программирования
- •6.1. Содержательные постановки задач, приводящие к моделям линейного программирования.
- •6.2. Численные методы математического программирования
- •Лекция 7. Решение задач линейного программирования симплекс-методом
- •Симплекс-таблица
- •Лекция 8. Двойственная задача линейного программирования
- •Лекция 9. Транспортные задачи линейного программирования
- •9.1. Постановка задачи
- •9.2. Методы составления начального опорного плана
- •9.3. Понятие потенциала и цикла
- •9.4. Критерий оптимальности базисного решения транспортной задачи. Методы отыскания оптимального решения
- •8.5. Усложненные задачи транспортного типа
- •Лекция 10. Дискретное программирование.
- •10.1. Постановка задачи дискретного программирования
- •10.2. Математические модели задач дискретного программирования
- •10.3. Метод ветвей и границ для задачи целочисленного программирования
- •Лекция 11. Нелинейное программирование
- •11.1. Постановка задачи нелинейного программирования
- •11.2.Решение задач нелинейного программирования в системе matlab
- •Лекция 12. Динамическое программирование
- •Лекция 13. Принятие решений в условиях неопределенности. Введение в матричные игры.
- •14.1. Основные понятия теории игр. Введение в матричные игры
- •14.2. Формальное описание матричной антагонистической игры
- •Лекция 14. Решение игр в смешанных стратегиях
- •14.1. Постановка задачи
- •14.2. Основные понятия теории статистических решений
- •15.3. Выбор критерия принятия решения
- •14.3.1. Критерий Лапласа
- •15.3.2. Критерий Вальда
- •14.3.3. Критерий Гурвица
- •14.3.4. Критерий Cэвиджа
4.2. Возможности и эффективность моделирования систем на вычислительных машинах
Обеспечение требуемых показателей качества функционирования больших систем, связанное с необходимостью изучения протекания стохастических процессов в исследуемых и проектируемых системах S, позволяет проводить комплекс теоретических и экспериментальных исследований, взаимно дополняющих друг друга. Эффективность экспериментальных исследований сложных систем оказывается крайне низкой, поскольку проведение натурных экспериментов с реальной системой либо требует больших материальных затрат и значительного времени, либо вообще практически невозможно (например, на этапе проектирования, когда реальная система отсутствует). Эффективность теоретических исследований с практической точки зрения в полной мере проявляется лишь тогда, когда их результаты с требуемой степенью точности и достоверности могут быть представлены в виде аналитических соотношений или моделирующих алгоритмов, пригодных для получения соответствующих характеристик процесса функционирования исследуемых систем.
Средства моделирования систем. Появление современных ЭВМ было решающим условием широкого внедрения аналитических методов в исследование сложных систем. Стало казаться, что модели и методы, например математического программирования, станут практическим инструментом решения задач управления в больших системах. Действительно, были достигнуты значительные успехи в создании новых математических методов решения этих задач, однако математическое программирование так и не стало практическим инструментом исследования процесса функционирования сложных систем, так как модели математического программирования оказались слишком грубыми и несовершенными для их эффективного использования. Необходимость учета стохастических свойств системы, недетерминированности исходной информации, наличия корреляционных связей между большим числом переменных и параметров, характеризующих процессы в системах, приводят к построению сложных математических моделей, которые не могут быть применены в инженерной практике при исследовании ких систем аналитическим методом. Пригодные для практических рассчетов аналитические соотношения удается получить лишь при упрощающих предположениях, обычно существенно искажающих фактическую картину исследуемого процесса. Поэтому в последнее время все ощутимее потребность в разработке методов, которые : бы возможность уже на этапе проектирования систем исследовать более адекватные модели. Указанные обстоятельства приводят к тому, что при исследовании больших систем все шире применяют методы имитационного моделирования [3,6].
Наиболее конструктивным средством решения инженерных задач на базе моделирования в настоящее время стали ЭВМ. Современные ЭВМ можно разделить на две группы: универсальные, прежде всего предназначенные для выполнения расчетных работ, управляющие, позволяющие проводить не только расчетные работы, но прежде всего приспособленные для управления объектами реальном масштабе времени. Управляющие ЭВМ могут быть использованы как для управления технологическим процессом, экспериментом, так и для реализации различных имитационных моделей. В зависимости от того, удается ли построить достаточно точную математическую модель реального процесса, или вследствие сложности объекта не удается проникнуть в глубь функциональных связей реального объекта и описать их какими-то аналитическими соотношениями, можно рассматривать два основных пути использования ЭВМ: как средства расчета по полученным аналитическим моделям и как средства имитационного моделирования.
Для известной аналитической модели, полагая, что она достаточно точно отображает исследуемую сторону функционирования реального физического объекта, перед вычислительной машиной стоит задача расчета характеристик системы по каким-либо математическим соотношениям при подстановке числовых значений. В этом направлении вычислительные машины обладают возможностями, практически зависящими от порядка решаемого уравнения от требований к скорости решения.
При использовании ЭВМ разрабатывается алгоритм расчета характеристик, в соответствии с которым составляются программы (либо генерируются с помощью пакета прикладных программ), дающие возможность осуществлять расчеты по требуемым анали-1ческим соотношениям. Основная задача исследователя заключается в том, чтобы попытаться описать поведение реального объекта одной из известных математических моделей.
Обычно модель строится по иерархическому принципу, когда последовательно анализируются отдельные стороны функционирования объекта и при перемещении центра внимания исследователя рассмотренные ранее подсистемы переходят во внешнюю среду. Иерархическая структура моделей может раскрывать и ту последовательность, в которой изучается реальный объект, а именно последовательность перехода от структурного (топологического) уровня к функциональному (алгоритмическому) и от функционального к параметрическому.
Результат моделирования в значительной степени зависит от адекватности исходной концептуальной (описательной) модели, от полученной степени подобия описания реального объекта, числа реализаций модели и многих других факторов. В ряде случаев сложность объекта не позволяет не только построить математическую модель объекта, но и дать достаточно близкое кибернетическое описание, и перспективным здесь является выделение наиболее трудно поддающейся математическому описанию части объекта и включение этой реальной части физического объекта в имитационную модель. Тогда модель реализуется, с одной стороны, на базе средств вычислительной техники, а с другой — имеется реальная часть объекта. Это значительно расширяет возможности и повышает достоверность результатов моделирования.
Детерминированные модели описывают поведение систем с позиций полной определенности состояний системы в настоящем и будущем. Примерами таких моделей являются описания физических закономерностей, формулы, описывающие взаимодействие химических веществ, программы обработки деталей и т.д. Детерминированный подход находит применение при решении задач планирования транспортных перевозок, при составлении расписаний, планировании и распределении ресурсов, в задачах материально-технического снабжения, в планировании производства.
Вероятностные модели описывают поведение системы в условиях воздействия случайных факторов. Следовательно, такие модели оценивают будущие состояния системы с позиций вероятностей реализации тех или иных событий. Примерами вероятностных моделей являются описание времени ожидания, обслуживания или длины очереди в системах массового обслуживания, модели расчета надежности системы, модели определения риска от наступления нежелательного события и пр.
Игровые модели дают возможность изучать конфликтные ситуации, в которых каждая из конфликтующих сторон придерживается своих взглядов, и характер поведения каждой из них диктуется личными интересами. Примерами таких систем являются отношения двух или нескольких производителей одинакового товара. Их поведение на рынке обусловлено интересами каждой из сторон. Как правило, эти отношения имеют характер конкурентной борьбы.
Широкое применение математических моделей в задачах системного анализа обусловлено универсальностью подхода к анализу как систем в целом, так и явлений и процессов, происходящих в них, способностью отразить все разнообразие закономерностей их развития и поведения. При применении математического моделирования появляется возможность проведения глубокого анализа задачи, обнаружения ошибок и корректировки исходных постулатов. При этом затраты на проведение исследований существенно меньше по сравнению с аналогичными исследованиями на реальных объектах. Если к тому же учесть,что ряд исследований на реальных объектах провести нет возможности либо по причине физической нереализуемости, либо ввиду больших материальных затрат, либо ввиду нежелательных последствий, наступающих в результате завершения исследований, то становится понятным, что исследование на математических моделях является чуть ли не единственным способом решения поставленных задач. Понятна нежелательность, мягко говоря, проведения натурных испытаний по установлению причин, приводящих к авариям на атомных электростанциях. Такие исследования проводят исключительно на моделях.
При составлении моделей проявляются знания, опыт, интуиция и квалификация системных аналитиков. Создание модели требует четких представлений о роли моделируемых систем в решении поставленной задачи системного анализа, об их особенностях, о предполагаемом использовании результатов системных исследований. Математические модели могут иметь вид формул, систем уравнений или неравенств, логических выражений, графических образов, отражающих зависимость между выходными параметрами, состояниями системы, входными параметрами и управляющими воздействиями. Анализируемая система может быть описана разными моделями, каждая из которых обладает характерными свойствами и пригодна для решения лишь определенного круга задач, относящихся к структуре и функционированию системы.