
- •1 Часть
- •2. Кризисы и революции в естествознании. Физические революции как основные вехи развития естествознания. Современное естествознание и необходимость очередной физической революции.
- •Билет 3. Научная методология: физическое моделирование и математическое описание. Ограниченность моделей и представление об абсолютной и относительной истине.
- •Билет 4. Явление самоорганизации в природе. Основные понятия синергетики: флуктуация, бифуркации, аттракторы, фракталы.
- •Билет 5. Концептуальные представления о материи, движении, пространстве и времени. Понятие о структурных уровнях организации материи. Мегамир, микромир и макромир.
- •Билет 6. Постулаты теории относительности Эйнштейна.
- •7. Механика как основа физики. Основные законы и понятия механики.
- •8. Законы сохранения количества движения (импульса), энергии и момента количества движения.
- •Билет 9. Концептуальные представления о различиях в строении твердых, жидких и газообразных тел.
- •Билет 10. Концепция атомизма от демокрита до наших дней. Планетарная модель атома резерфорда. Корпускулярно-волновой дуализм и волны де Бройля.
- •Билет 11. Основные представления современной химии – атом, его ядро, молекула, элемент, вещество, ион, катион, анион, аллотропия. Эволюционная химия.
- •12. Взаимосвязь атомно-молекулярного строения и химических свойств веществ. Периодическая таблица элементов д.И. Менделеева.
- •Билет 13. Химические связи, химическое равновесие и принцип Ле Шателье. Экзотермические и эндотермические реакции.
- •14. Галактики и их классификация. Наша Галактика.
- •15. Современные представления об эволюции звезд и звездных систем.
- •16. Солнечная система. Законы небесной механики – законы Кеплера. (Парадоксы Солнечной системы.)
- •17. Гравитационное взаимодействие тел. Закон Всемирного притяжения Ньютона. (гравитационный парадокс. Разрешение парадокса в эфиродинамике.)
- •19. Первое и Второе начало термодинамики космологический парадокс «Тепловой смерти» Клаузиуса.
- •20. Современные представления о происхождении и строении Земли. Геосферы Земли – ядро, мантия, кора, атмосфера.
- •21. Электрический заряд и электрическое поле, законы электростатики. Напряженность, электрическая индукция, взаимодействие зарядов, закон Кулона. Энергия электрического поля.
- •22. Электрический ток и магнитное поле. Напряженность магнитного поля и закон полного тока. Энергия магнитного поля.
- •Билет 23. Геометрическая оптика и волновая теория света. Явление интерференции и дифракции.
- •Билет 24. Закон Хаббла. Красное смещение спектров и объяснение эффектов.
- •Билет 25. Гипотезы происхождения жизни на Земле. Теории эволюции жизни.
- •Билет 26. Основные теории антропогенеза.
- •Билет 27. Наследственность и изменчивость. Синтетическая теория эволюции.
- •Билет 28. Экология. Сущность экологического кризиса и меры по его предотвращению.
- •Билет 29. Биосфера Земли. Взаимодействие организмов со средой обитания.
- •30. Основные научные достижения в биологии и генетике. Роль днк и рнк в системе управления генетической информацией.
- •Билет 31. Генная инженерия и клонирование.
- •32. Сознание и интеллект. Человек и эмоции.
- •33. Понятие о ноосфере и ноосферности мышления. Работы в.И. Вернадского. Роль разума в дальнейшей эволюции Земли и ее биосферы.
- •34. Роль космических факторов в регуляции жизни и сознания. Исследования Чижевского. Биоциклы человека.
- •Билет 35. Основные экологические проблемы на современном этапе.
- •Билет 18. Космологический фотометрический парадокс Шезо-Ольберса. Парадокс как результат неучета всех физических факторов.
- •2 Часть
- •1.Формы движения материи. Кинетическая и потенциальная энергии, их природа и взаимопревращения.
- •2.Концепции симметрии и асимметрии. Природные проявления симметрии.
- •3.Понятие о взаимосвязи и размерности физических величин.
- •4.Системы измерений как язык анализа качества и количества. Система си в единицах физических величин.
- •5.Сущность процесса измерения. Погрешности измерений, их виды, причины.
- •6. Средства измерений в познании мира. Основные метрологические характеристики средств измерений; методы измерений, (методические и инструментальные погрешности-№5 смотри)
- •7. Случайность как непознанная закономерность. Случайные и систематические погрешности, их учет и устранение
- •10. Классы точности измерительных приборов. Абсолютная и относительная погрешности
- •14. Изменение полей при движении объектов. Эффект Доплера и его применение в технике
- •15. Квантовые генераторы: физическая сущность, виды и особенности лазеров, области применения. Квантовые явления в физических средах.
- •16. Квантовые эффекты в микромире. Понятие о спектрах излучения и поглощения, спектрометрия
- •17. Проблема отражения и запоминания информации. Понятие о голографии, области применения
- •18. Физические основы акустики. Эволюция средств звукозаписи и воспроизведения звука
- •19. Основные законы цепей постоянного тока. Техническое использование постоянного тока
- •20. Основные закономерности цепей переменного тока. ( тут фигня к-то! См другое)
- •22. . Закон Фарадея и принцип действия электрических трансформаторов.
- •23. Взаимодействие электромагнитного поля и движущегося заряда. Сила Лоренца. Принцип действия электрогенераторов
- •24. Электромагнитное излучение и его природа. Шкала электромагнитных волн, области применения
- •27. Существующие и альтернативные источники энергии. Энергетические преобразователи, их виды и применение
- •28. Ядерная энергия и проблемы ее использования.
- •29.Поведение веществ в электрических полях. Диэлектрики и пьезоэлектрики и их применение
- •Поведение веществ в магнитных полях. Ферромагнетики и ферриты, их применение
- •31. Органические вещества и соединения естественного и искусственного происхождения. Полимерные материалы. Термопласты и реактопласты и их применение.
- •32.Дефект массы и энергии связи в ядрах атомов.
- •33.Радиоактивность и закон радиоактивного распада.
- •34. Основные положения молекулярно- кинетической энергии.
- •35. Проблемы техносферы и понятие о ноосфере.
7. Механика как основа физики. Основные законы и понятия механики.
Механика — наука о движении материальных объектов и взаимодействии между ними. Классическая механика связана с именем Исаака Ньютона (1643-1727). Он ввел следующие понятия:
Скорость
– путь пройденный в единицу времени.
,
Ускорение
характеризует быстроту изменения
скорости движущегося объекта.
Масса тела – физическая величина, одна из основных характеристик материи, определяющая ее инерциальное и гравитационное свойства.
Сила – это векторная величина, мера механического воздействия на тело со стороны других тел или полей, в результате которого тело приобретает ускорение или изменяет свою форму и размеры.
I закон Ньютона:
Существуют такие системы отсчета, относительно которых тела сохраняют свою скорость постоянной, если на них не действуют другие тела и поля (или их действие взаимно скомпенсировано).
II закон Ньютона:
В инерциальной системе отсчета ускорение материальной точки пропорционально величине действующей силы, направлено вдоль линии действия силы, обратно пропорционально инертной массе.
III закон Ньютона: В инерциальных системах отсчета силы взаимодействия двух материальных точек:
1) возникают парами 2) равны по величине 3) противоположны по направлению 4) приложены к разным телам 5) имеют одну природу
Принцип относительности Галилея: никакими механическими опытами, проводимыми внутри данной инерциальной системы, нельзя установить, покоится эта система или находится в равномерном и прямолинейном движении. Во всех инерциальных системах отсчета законы механики одинаковы.
Вес тела — сила, с которой тело давит на опору.
Закон Гука: при достаточно малых деформациях сила упругости пропорциональна величине деформации тела и направлена в сторону, противоположную деформации.
Импульс тела (материальной точки) — векторная величина, равная произведению массы тела (материальной точки) на её скорость.
Закон сохранения импульса: в инерциальной системе отсчета импульс замкнутой системы сохраняется.
8. Законы сохранения количества движения (импульса), энергии и момента количества движения.
В классической механике полным импульсом системы материальных точек называется векторная величина, равная сумме произведений масс материальных точек на их скорость.
Закон сохранения количества движения (импульса):
Сумма импульсов всех тел (или частиц) замкнутой системы есть величина постоянная.
Энергия — скалярная физическая величина, являющаяся единой мерой различных форм движения материи и мерой перехода движения материи из одних форм в другие.
Закон сохранения энергии:
Энергия изолированной (замкнутой) системы сохраняется во времени. Другими словами, энергия возникнуть из ничего и не может в никуда исчезнуть, она может только переходить из одной формы в другую.
Момент импульса (кинетический момент, угловой момент, орбитальный момент, момент количества движения) характеризует количество вращательного движения.
Закон сохранения момента количества движения (импульса):
Векторная сумма всех моментов импульса относительно любой оси для замкнутой системы остается постоянной.